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by:

T.A.C.M. van der Put, TU Delft CiTG Timber Engineering

1 - Extension of the comment on the Heron 53 No 1 article

Comment on the Heron 53-1 article was given in Heron 53 (2008) No. 3. Due to the
given space limitations, most problems only could be mentioned and subsequent
remarks and remarks on the thesis are given here with extensions in chapter 2.

This discussion uses the same notation, literature references and equations numbers
as the Heron 53-1 article and the Heron 53-3 comment on the article. For new
references upper case letters are used.

The stability approach of the article is based on the equations of the Dutch Timber
Code [12], being extensions of the Chen and Atsuta equations for eccentric loading
along the beam axis. These TGB-equations are simplified in an unique way to retain
the determining coupling term in all circumstances and the solution satisfies the
failure criterion. This last is not followed in the article and a not general applicable
integrated form of the equations is used, applied to a fictive, (Euler-type) central
normal and lateral loading case, only in the stiff direction, thus without primary
loading for lateral buckling. In the main direction this leads to the first of Eqs.(17)
and (18a), of a free supported, lateral rigidly supported beam, loaded by centric loads
without a second order effect for bending, while also the second order effect of
compression is left out of the lateral buckling equations (18b) (to obtain uncoupling
of the equations) leading to a fictive case, without primary moments M,; =M, =0

and zero eccentricities @, =e, =0. Thus only an impossible, unsafe case is treated,
based on wrong differential equations (18a) and wrong solutions by wrong splitting

of variables and wrong superposition, n-values, failure criterion, etc. etc. The theory
is nowhere applied rightly in thesis and article as is shown here (giving the proof).

Application thus certainly leads to building damage. This is corrected here as a
necessary completion of the thesis.

Following the comment of Heron 53-3 on the Heron 53-1 article, the most severe
mistakes to be discussed with increasing importance, are:

- 1. The elastic stability approach is claimed to be followed in the article although the
TGB-failure criterion of severe flow is used named “unity check” or “ultimate state”
in the thesis. Elastic critical instability does not exist for structural building elements.
It even is not thinkable for lateral buckling (called flexural torsional buckling by the
authors) where the large deformation analysis shows that the deformation remains
increasing at increasing loading in the elastic buckled stage. As shown by buckling



and lateral buckling tests (Stevin-laboratory, missing in the thesis), the ultimate state
occurs. Therefore, the applied linear bending stress diagram has to be adapted to the
occurring nonlinear elastic-full plastic diagram by profile factors in accordance with
the so derived failure criterion. Also the matching apparent E-modulus then has to
be determined from this ultimate state. (See [B] and paragraph D below).

- 2. The analysis of article and thesis is wrongly based on not general applicable 2nd
degree differential equations in stead of the right 4" degree differential equations of
the problem. From the 6 equilibrium equations, the forces are eliminated so that
three differential equations of the 4" degree of the moments remain. The applied
twice integrated 27! degree equations with zero integration constants only apply for
free supported beams and cannot at the same time apply for fixed supports and other
boundary conditions as is done. Thus a right application for real loading cases and
boundary conditions is prevented in thesis and article.

- 3. The serviceability condition is wrongly applied. According to international
agreement, the subjective and rather personal free serviceability limit has to be based
on linear elasticity and not on a stability calculation, as done in the thesis and article,
because this leads in fact to a second ultimate state criterion by which countries may
keep out foreign constructors and manufacturers of the Union (by rejecting their
products being not based on their requirements of this second failure criterion).

- 4. The severe nonsense written in 8.2, of the thesis or in 5 of the article about
normative stresses, shows that it is not known that the failure criterion [12] is a
straight line approach, Eq.(f), of the failure curve following from the ultimate elastic-
plastic stress-distribution in the critical cross section due the loading F, My, M, , that

- with exception of the Timber Code, which only applies for simple cases — has to be
approximated by 2 straight lines, giving the right failure criterion for every situation.
The applied straight line cut off of the Code, called unity check by the authors is not
a superposition of stresses, as given in Fig. 13, and is not, contradictory at the same
time, a totally different sum of weighted or “normative” stresses (Eq.(40)). Fig. 13
thus is wrong because it does not show the ultimate elastic-plastic stress state that
determines the expression (Eq.(f)) of the failure criterion. One of the terms of this
“unity check”-equation is for compression and the other for bending, thus also
authors reply in Heron 53 - 3, that the compression stress has to be added to the
bending stress, is not right. This of course is not possible in the plastic zone. (See also
discussion in paragraph D and E)

- 5. Superposition is not allowed for stability, also not in the elastic stage. Thus,
Egs.(39a/b) etc. are wrong. The analysis should be based on the total load of the
different determining critical load combinations. This means that the examples given
in the article are useless (never determining) and the proposed iteration method is
too lengthy and practical impossible in praxis by the complicated load- and moment
distributions along the beam axes and the only rational method is to sum up the first
expanded Fourier term of the primary loads or primary moments of the determining



loading combinations. This means that in the article only one loading case of a first
expanded should have been regarded making all future calculations and iterative
procedures superfluous. Because this solution, based on the first expanded, (or mean
of the moment surface of the middle part of the beam) already is known, even in the
necessary format of the interaction equation of the ultimate state (TGB-method), it is
a major mistake to force people to invent the wheel again for every single calculation
with all sorts of illicit means as superposition, linking of stiffness, splitting of
variables, illegal disregard of initial eccentricities, plasticity and failure etc., etc.

- 6. Because of the elastic and plastic non-linearity, the series and parallel linking of
n-values (stiffness) is not valid, even not in the treated most simple, not existing
Eulerian loading case of the thesis and article where all eccentricities and M etc. are

zero because then (see paragraph B):

M M
I_F 05 F 1 (34)
n F, \M, | F, \M,) (1-F/F,)1-F/F)

ez

This is not a simple linking of n-values because F,, and F; are not negligible (e.g. for

thin walled profiles with nearly equal stiffness in both main directions). This also
follows solely from M_ (a modification of M, , [B]) for a distributed load:
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The discussion of “n” for real, existing, loading cases is given in paragraph A and B.

- 7. The interaction equation between failure by buckling and by lateral buckling is
the critical stability equation for all materials. It is the goal of the calculation and
demanded justification of the safety for all materials. Only for timber this is not an
empirical equation but is derived from the theory as is the necessary basis of a
calculation. This theoretical method and equation is lacking in the article what is a
serious not allowed decline. (See discussion in paragraph D and E below).

- 8. The chosen splitting of variables in advance in the thesis and article is not
allowed and is a capital blunder. The splitting according to Eq.(9) of the article:

vV=v,+V,+V, )
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of the variable “v” into an initial value v ; a first order displacement by the external
load v, and a second order displacement v,, is impossible because the components:
v,, v, of “v”, follow the second order equation Eq.(a) and v, then can not satisty
the first order equation, Eq.(b), as well. v, in Eq.(b) is a function of M_; only, while

v, in Eq.(a) is a function of v,, w,,w,,0,,¢0,,F,M ;,M_,,M_, . Stating the v, s to be

vyl
the same is stating the differential equations (a) and (b) to be the same (= to be
dependent). To obtain the second order displacements, the solution of Eq.(b) has to
be subtracted from the solution of Eq.(a).

Further, the splitting of variables cannot be based on the treated fictive loading case,
Eq.(17) as done, because for M,; =M, =0, only a trivial solution of Eq.(b):

v, = @, =01is possible. Non-trivial solutions follow from the real occurring cases of
[12], given in [14] as Eq.(4.07). Then the splitting in the Heron 53-1 article of:

W=W,;+W,;, V=V, +V,; 0=0;+0,

(when initial values are left out for shortness of illustration), leads to:

EL (Wy+w,)"+Fw—-M;v'-M,;0+M,; =0

EL (v;+v,)"+Fv+ M w'+ M9+ M,; =0 (a)
_GIt ((pl +0, ) - lew + 1\/Iy1V + Mxl + Mx2 =0

The displacements with index 1 is expected to also follow the linearized equations:

EL (w)"+M,; =0

EL (v,)"+M ;=0 (b)
-GL (¢,)'+M , =0

As mentioned this is impossible because w;, v; and @, can not satisfy Eq.(a) and
Eq.(b) at the same time. Substitution of Eq.(b) into Eq.(a) for a solution, as done in the
article, gives Eq.(4.08) of [14] and Eq.(18a) (for small values of M, and M ,):

EL (w,)"+F(w; +w,) =M (v; +v,)' =M, (¢, +¢,) =0

EL (v,)"+F(vy +v,) + My (wy + W) '+ My, (9, +9,) =0 (©)
-GL(+9,)'-M_,(w, +w2)'+My1(V1 +v,)'+M_, =0

This however is only a partial elimination of index 1 values. However the authors
solved the total displacement of these partial eliminated, meaningless Eq.(c) in a
wrong way. This is discussed below at Eq.(e) and at paragraph A.

A necessary further elimination of index 1 deformations to solve the index 2
deformations of Eq.(c) gives for the first of Eq.(c):

EL (W,)"+F(w,)"=M,,(v,)"=M,(9,)"=F(M_, /EL ) =M, (M,,)/ EL +
-M,,(M,,)/Gl,) (d)

Because the author’s reply is not convinced of Eq.(d), the derivation in the smallest
possible steps is given below at paragraph C. Eq.(d) shows that the primary



moments are still in the second order equation, now in a wrong way. The index 1
displacements have no meaning and have to be omitted and index 2 displacements
like v, should be read as v, =v-v,, where v is the total displacement following as
solution of Eq.(a). The second order moments thus don’t follow from the wrong
Eq.(c), that for M, =M, =0 is equal to Eq.(18a) e.g.: EL (w—-w)"+Fw =0

with the solution M, =nFw, / (n—1), but follow from the subtraction of the solution

of the linearized equation Eq.(b) from the result of the solution of the non-linear
equation, Eq.(a). Thus Myz = n(Myl +Fw,)/(n-1)- Myl = (Myl +nFw,)/(n-1). Thus

Myl /(n—1) is not accounted in My2 in thesis and article. This also leads to a wrong
definition of n =n*.

- 9. The definition by n* in Eq.(12), (13) has no meaning because it is an identity,
replacing v, by v/n*. Thus n* is a superfluous shortcut for v/v, =(v,+v,+v,)/v,.
It thus has nothing to do with the multiplying factor “n” because that factor cannot
be stated in advance but follows as the solution of the total displacement “v” from
the differential equations Eq.(a). Inserting the shortcuts Eq.(12a,b):

(n*), =n =w/w,=w/(w-w,) and (n*), =n, =v/v, =v/(v-v,) with

y
M,; =M,; =0, in Eq.(c) gives:

EIyw”/ n +Fw=0

ELv"/n,+Fv+M;0=0 (e)
-GlLip'+M,v'=0

As following blunder, these equations, Eq.(e), being Eq.(6.08) of the thesis, are solved
for constant values of n, and n, what is impossible because e.g.
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n, =v/v,=v/(v-v,) can not be constant because v, the initial value of “v” can

not be proportional to “v”. This so called n*-method, the new approach of the article
and thesis, thus is not right. The real meaning of n* is derived below in paragraph A.

In article and thesis the mistake is made to apply the iterative numerical solution on
the fictive loading case: M,; =M,; =0 giving only the trivial solution of Eq.(b):

v, = @; =0 and to regard this as a real solution. Lucky, this mistake of a mistake
leads to the right values v, = ¢, =0 for Eq.(a) because the index 1 displacement have
no meaning in Eq.(a). This means that splitting of variables is not applied on the
coupled equations of Eq.(a), giving therefore the right solution. The authors reply
thus is not right. The finite element method does not proof the splitting of variables

to be right, but to be wrong, because it confirms the common analysis with no split

variables. The splitting only is applied on the uncoupled equation for “w” and w, is

solved from Eq.(b) leading only to a wrong failure condition Eq.(40):

M, M
F£+M—yl+M—22:1 (40)
u uy uz



with a not multiplied first order moment M, . This has to be:

M_+Fw M
L Y 0 22 ®
E, M, (1-F/F,) M,

u

This wrong failure criterion Eq.(40), applied in the calculation examples of article and
thesis, also is inserted in the finite element solution of the thesis what explains the
same result of both identical calculations despite the error.

The second term of Eq.(f) may also dominate in the failure criterion when the
stiffness of both main directions are not far apart (in columns), leading to severe
unsafe errors when Eq.(40) is applied. The authors’ reply that this is only 1% is of
course absurd when F approaches both F;, and F;,.

- 10. The lack of knowledge what the failure criterion is leads to other unpredictable
errors as for instance in 6.2, the calculation example. It is terrible that it is possible to
extend the failure criterion with a fourth term with M_,:

F M, M M, q

—+ +—=+ =1
E M Muz Muzﬂ (g)

u uy

This moment should be added to M, or to M,, depending of the direction of M 4.

Because M, is the self-equilibrium bimoment, M _, =0, causing a zero bending
moment on the section (see pg 274 of [C]).

The failure criterion Eq.(f) is no summation of stresses and also no summation of
meaningless relative stresses but is the result of plastic flow of nearly the whole cross
section due to the external loading F, M| and M, independent of an internal stress

redistributions by an internal equilibrium system. It is incredible that, after the
extended discussion and delivering of 15 pages on the failure criterion in 2001, (See
par. G) and after the extended discussion with respect of the thesis and the extended
discussion of the reviewer of the Heron article, it still is not known by the author’s
reply what the failure criterion is, and still is not known that it is not the result of an
incomprehensible kind of summation of stresses.

By applying simplified Code TGB-equations, the approach of the thesis is meant for
the same simple cases. However, the Code is safe in all circumstances what is not the
case for the approach of the article because of the mentioned mistakes; the possibility
of a wrong applied failure criterion also not accounting for the influence of a reduced
shear-capacity due to the plastic zone of the cross section with the absence of safety
against torsional instability (e.g. when I, =1 ); the negligence of initial eccentricities

and initial loadingM,;,M,, and of E,and F; in Eq.(34), Eq.(40) and Eq.(f), etc. what

surely will be disastrous when determining.

2. - Additional comment correction and explanation

A. - The inadmissibility of the so called n*-method
As mentioned above the given definition of the n-values shows that they can not be



constant in Eq.(e) and an other meaning should be found. This meaning of n* can be
derived as follows. .

Eq.(e) are solved in the thesis by giving a zero value to the nominator determinant.
This means that n* = n_ should be regarded as such a reduction factor of the stiffness
El, that the general solution becomes determining at the given loading in stead of the
normally determining particular solution.

The coupled equations (4.07) or (5.01) of the thesis are:

EL (v-vy)"+Fv+M,0=0 (5.01)
-GLo'+M,v+M, =0

The homogenous parts for the general solution thus are:

ELv"+Fv+M,;¢=0 (5.01b)
-GLo'+M,v'=0

The general solution of Eq.(501b) follows from the substitution of:

v=Ae™ en ¢=Be",

and by the zero value of the numerator determinant giving the value A of the
characteristic equation according to:

M 2
a4l B Y)z =i
L FE (Mcr)
with F; =n’EL, /L* and M, = n°EL,GI, /L.

The total solution of v, including the particular solution then is:

v = Asin(A'x)+ Bcos(A'x) +#M
I
F, F.GI,

In this case with a sinus form of v,, v, = Asin(nx /L), only the particular solution

applies because A'< /L, because F and M, remain below their Euler values by the

presence of the initial displacements and because the strength is reached earlier.
When v approaches zero, the general solution (with B = 0) approaches the

particular solution with A'=n/L and is:

M)
F ( y)2 1

. Mgy)

This can be seen as follows. From the particular solution follows that:
v-vy, F Mi 1

— 4+ —
\Y F FGL, n,

so that the general solution can be given like:

v=Asin| 22 [Y=Y0 | Agin| 22X b
L v L A\In

p
For v, — 0, this approaches to the particular solution with A=n/L. The same can be

done for the solution of the thesis equations Eq.(5.01c). In this equation EI_ is



reduced to EI /n, giving:

M)
E + ( y ) 5 = + IE &
FE (Mcr) L np
The general solution giving n,, becomes determining when n, =n,, or:

1 1 F M)
_+—

n, n, F (M)

z p
“"__7

The virtual stiffness reduction factor n, =n* thus is equal to “n” of the second order
multiplying factor n/(n-1) on v,. However, this only is right when there is no
primary loading and when ¢, = 0. In the same way, when @, is not zero, only the

right value n, =n_ =n* applies when v, =0. Further, equating the nominator

p
determinant to zero, only gives one equation with one unknown. Thus for a coupled

system, n_ for the displacement w, only can be obtained when v, =¢,=0.

For a real non Eulerian case, when initial eccentricities are not zero, e.g. when v,

“"__r

and @, are not zero, “n” only can calculated from the determining particular solution

which is e.g. in this case:

M?,V0
1 vevy My(p0 +Fv, +
_ 0 _ t

n v o Fgvo+ M, ¢,

Clearly the n*-method does not apply for real loading cases but only for the fictive
case of the partial uncoupled equations with @, =0, without eccentricities and pri-

mary loading, thus M, =M _, =0, thus the only case discussed in thesis and article.

In the iterative calculation of thesis and article, “n” rightly is determined from the
particular solution although it is superfluous to determine this virtual uniaxial value
of “n” because no conclusions follow from it. The only criterion is the from “v” calcu-
lated moment that, together with other loading should satisfy the failure criterion.

B. - The uselessness of the Eulerian uniaxial multiplication factor n/(n-1)

The uniaxial multiplication factor n/(n-1) does not exist in a simple explicit form in
the always occurring triaxial loading case (by the initial eccentricities and
heterogeneities) because this factor then is a complicated expression of the loading,
thus showing no bifurcation and the failure behaviour is comparable with the
common bending test causing the writing n/(n-1) senseless and superfluous.

For the most simple biaxial loading case of the twofold eccentric compressed straight
Euler column there is no explicit solution of the characteristic equation, giving
loading dependent Euler values. For the symmetric cross section this follows in this
case from the characteristic equation on pg. 163 of [C]:

(EL,A* + F)(EL,A? + F)(EI,A* - GK, —K) - (Fe,)*(EL A% + F) +

—~(Fe,)*(ELA* +F) =0



Based on the first expanded terms of the Fourier expansion, most of the 12
integration constants can be taken to be zero and the sinus-function remains as
solution. This approaches to the particular solution with: A =in/L, when v,
approaches zero. With the equivalent torsional rigidity:

GI,, =n’EI, /1? +GK, +K

the characteristic equation becomes, with: Fy, = t*EIl_ /172, etc.:

~(Fg, ~F)(Fy ~F)Gly +(M,)* (Fgy —F)+ (M, )’ (Fg, ~F) =0

If one of the eccentricities is zero, e.g. when M, =0, the equation is equal to the thesis
equation (for n=1). For double eccentricity this is:
2 M, )? 2 (M)
(Mz) + ( Y) =1 or (Mz)2+( Y)2=1
GIve (FEZ _F) GIve (FEy _F) (Mcz) (Mcy)
where M, = /G, F, (1-F/F;,) and M, = \/GIVEFEy(l—F/FEy)

are loading dependent by F, because splitting as separate term in F is not possible.
These expressions of M _, dependent on F, show that the parallel and series linking of

1/n according to the equations (5.15), (5.16), (5.92), (5.9), (8.15), etc. of the thesis (and
Eq.(34) to (39) of the article) are not right. Only for the simplest possible, fictive Euler
case of thesis and article is for high beams approximately:

1 (M) F

= L +—,

n |\ M, Fy

from what it is wrongly concluded that always in general applies:

L + 1 (called, parallel linking).

n ny ng

The real occurring equivalent value of “n” follows from the moment Eq.(11") on pg. 7
of [B]. having the form:

M oM -y M;

zF = =

N 1-1/n,
whereby N is the expression of the nominator. From this follows that:
1 N 1 N
l-—=— or —=1-—
n, ¢ n, G

1 1 1 1

The nominator term is:

2 2
N:(l— F ) 1_eVMy ~ M, _,_F - F eny+epMZ ~ My .
Fez GI, M, Fez Fez Gl M,
In this equation is:
F, =n’El /17;
GI, =7°El, /I? +GI, +K = GI,(1+%°El, /(GL,L*} - F(I, +1,) /{GL,A}) =
=GI,(1+7°El, /{GLI*})(1-F/F,)
Gl,, =GI,(1-F/E,)/(1-EL,/EL) and M, =E,-GI,, .




“e” and “s” are eccentricities of vertical and horizontal the lateral loading “q” and
“p” respectively.

The denominator terms ¢;M; of M, ;. are:

e M, +e M M, \ M., (s —e
Fvy|1-—+2—P 2 |+ F v,| — | +o,M +MZ(1+M)+
Gl M, y GI

£“_ 7
S

v v

2 2
Mg -84 - M; -s,
GI, Gl

where the denominator moments M;, are the primary moments by p and q.

+

v

The most simple contribution to M, . of the term P M, is:

n M@, /(n,—1), (Thus ¢; =1) and

¢

2
i:£+ 1_1 _ eM, +e M, . M,
nq) Fez Fez GIV Mk

This relation also applies for the last 2 denominator terms and for the second
denominator term.
For the equivalent multiplication factor of Fv, thus: n;Fv, /(n; —1) is:

2
1_i_ 1_i . e M, +e M, ~ M,
1 Fez Fez GIV Mk

~ e ny +e pMZ
GI,

From this all follows that there is no simple parallel and series linking of 1/n in this

slightly more general loading case than the trivial one of the thesis and article as is to
be expected from elastic non-linearity. The Eulerian n/(n -.1) expression for each term
is thus immensely more complicated than the direct solution and the method is not
applicable even not for simple loading cases.

It thus is necessary for real cases to apply the simplification by means of an
interaction curve as is applied in the TGB and is applied for all other building
p7€q/85:54, Py and M, is
treated and the only remaining denominator terms then are:

M.\
Fv, and E,,v, M_y
k

materials. In the thesis, only the trivial case with zero e

and the value of 1/n becomes as simplest possible (Eulerian) case:

2 2
1_F [My)_F [ M 1
n F, (M) FE, (M) (1-F/F)1-F/F)’

showing still no possible series of parallel linking as discussed in paragraph 6.

C. - Derivation of Eq.(d)
Because the displacements can not satisfy both independent equations Eq.(a) and

10



Eq.(b), there is no unique solution possible. Thus the solution depends on the way
followed at elimination of w,, v, and ¢, from Eq.(a). To eliminate these variables

from Eq.(c), this equation has to be differentiated twice, thus:

B (w,)""+ F(w,) "+ F(wy) "= (M, (v, +v,))"= (M, (9, +9,))" = 0, giving for the
term: (M, (v, +v,))"=((M,)'(v; +V,)'+M (v, +Vv,)")'=

=M, )"(v;+V,)+2(M ) '(v, +V,)"+M (v, +V,)" =

=2(M_)'(v;+Vv,)"+M (v, +Vv,)", because (M,,)" =0 by the constant eccentricity.
The last term is:

(M,1(9, +9,))" =((M,1) (¢, + ;) + M, (¢, +9,))' =

(M) (01 +9,) +2(M,;) (0 +9,) + M, (@ +¢,)" =.

=2(M,,)'(¢, +9,)'+M_ (¢, +,)", because (M,,)" = q, =0 of no horizontal loading.
Substitution from Eq.(b): (w,)"= -M,, /EIy; (v))"'=-M_, /EL ; (¢,)'=-M_, /GI,
gives: EI (w,)"" +F(w,)"=FM,, / EL, ~2(M,;)'(v,)"+2(M,;)'M,, / EI, +

M, (v,))"+M (M,;)/EL, —2(M,,)'(9,)'+2(M,,)'M,, / GI, +
-M,,(9,)"+M,(M,,)'/GI, =0. or:

EL (W) "+ F(W,)"=M,; (V) "= M,1(9,) "= 2(M,1) (V) "= 2(M,1) (9,) " =

=F(M,, /EI)~2(M,,)'(M,,)/EL, -M,, (M, )"/ GI, ~2(M,,)'(M, )/ G, (d-1)
It is evident that this is far away from the real second order moment. To come closer
hereto, terms with moment gradients should be zero by regarding pure bending.

Pure bending dominates in praxis (between 2 lateral supports of large beams). For
pure bending: (M;)'=0 and for only end moments: (M ;)'=0 and Eq.(d-1) becomes

in general by weak moment gradients:
EIy(W2 ) IVIV+ F(Wz ) IV_ MXl(VZ)H‘_ le((pz ) " ~

= F(Myl /EIy) -2(M,,)'M,,)/EL, -M_,(M,,)"/GI, = F(Myl /EIy) (d-2)
Finally for the non existent loading case of thesis and article, thus for M ; =M _, =0
and @, =¢, =0, Eq.(d-2) becomes:

Because My1 is constant, also (w,)" is constant and (w,)" is now no variable of

Eq.(a) and subtraction of a constant is possible before integration. Thus: the first of
Eq.(a): EIy(w)"+ Fw=-M, is, after subtraction of the constants EIy(wl)” =-M,,,
equal to EL (w- w,)"+F(w) =0, being the first of Eq.(c). The solution however, is
not possible in w—w, =w,, but only in the total displacement “w” and the second
order w, stills follows (as generally) from the subtraction of w, from w.

The authors reply is wrong. There was no full substitution of the index 1 variables
into Eq.(a) and the equation then was not solved as done here in the right way.

11



D.- The calculation of the critical moment of lateral buckling

The lateral buckling calculation is a second order strength calculation for timber
structural elements. (This is a demand of Eurocode 1 and TGB-algemeen). In the
determining case of the in the TGB applied failure criterion there is plastic “flow” of
a large part of the cross section, much giving a higher strength with respect to the
(elastic) first flow state. The influence of the extension of the plastic area along the
beam length can be calculated (see ref. [A]), with aid of a simple relation derived in
the appendix of [B] and therewith the equivalent E-modulus is known. The, from this
following linear calculation method of the strength thus is a calculation code. The
linear bending strength is calculated from the elastic-plastic diagram (see appendix
of [B]). That is why profile factors are necessary to adapt the linear bending strength
to the real elastic-plastic stress distribution in the cross section of a beam. All
measurements of the combined bending-compression strength on pg. 33 of [B] can be
explained in this way accounting for the volume effect for tension. This also applies
for the bending strength of the full size stability tests of the Stevin-laboratory
(available as students report for a real thesis). The in the Raven thesis applied TGB-
criterion is a criterion for far extended plasticity as applies e.g. for indoors applied
not treated wood due to the always occurring mechanosorptive effect. The other
extreme case, when for a bad (not applicable) quality the bending tensile strength is
determining and linear behaviour occurs up to fracture, the failure criterion is totally
different (see pg. 33 of [B]). It can be seen that then the bending strength even
increases at the application of compression. (For wood, this of course is absent in the
thesis, but the same can be seen in the empirical interaction curve of concrete on pg.
233 of the thesis).

In the thesis, wrongly the Euler stiffness factor, e.g. 6, . at pg. 146, is regarded as

the lateral buckling strength. The lateral buckling strength however follows from the
solution of M, from the equation of the failure criterion (a third degree equation,

see [B], Eq.(15")) giving;:

MZ 2
. v [F +Fg, —Mg J +s Fp, —>
F y + WO C

f_+f + 2
Ez Mc

This relation is given here, just as in the thesis, for M, =0, while s and M_ are
non-linear functions in F (see [B], pg. 5 and Eq.(14)).

The determination of this lateral buckling strength or critical buckling moment is the
goal of the calculation. This is absent in the dissertation so that therefore reference
has to be made to [A] and [B]. The failure criterion:

£+ My,total Mz,total -1
Fu Muy Muz

is an approximation of the curve of combined bending-compression strength ([B],
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pg.33) for indoors applied, unprotected, high quality timber. This is not a linear
superposition of stresses as stated in the thesis and is not at the same time a
summation of stresses divided by their uniaxial strengths, as given in Fig. 8.1:

O +0pyy +0, =0y

as superposition. Although the failure criterion has nothing to do with superposition,
real superposition of loading is not possible for the non-linear buckling case.
Eq.(5.03) thus is not right. It shows the necessity to apply the first Fourier-expanded
or to apply the TGB mean loading over the mid half part of the beam. (This last is the
case because the work is proportional to (sin(nx/L))?, having the form of a step-
function over the mid half of the beam). Thus all bending stresses around the y-axis
have to be summed and then divided by uniaxial strength as done here above by:
M +Fw,.

E. - The buckling - lateral buckling interaction equation

The thesis claims to give one calculation method for all materials, but the contrary is
true. The same method for lateral buckling is already applied as long as theory exists
by the buckling-lateral buckling interaction failure criterion, called interaction
equation, giving a relation in terms of pure buckling and pure lateral buckling. This
relation is determined empirically for other materials, what is not right by the
demand to base the calculation on the theory. For wood, this interaction relation is
derived by elimination of the initial displacements v,, w,, @, from the 3 failure

criteria of compression (pure buckling), bending (pure lateral buckling) and
combined bending-compression (lateral buckling) giving one relation in terms of
pure buckling and pure lateral buckling. Only the pure buckling and pure lateral
buckling cases then are functions of the initial displacements and the bending
strength automatically approaches the Euler values for very slender beams and the
bending strength for stocky beams and the pure buckling strength remains below the
compression strength. This calculation of the critical values and of the interaction
curve is lacking in the dissertation.

It is destructive that the authors of the dissertation don’t know what the interaction
relation for buckling and lateral buckling is, stating in publications that it is a wizard
relation with no physical meaning and teaches this to their students.

F. - The proposed TGB-correction

Because the stability calculation of the CIB-Eurocode draft (and EC 5 draft), was not
sufficient, it was decided by the TGB-committee, 22 years ago, to follow a general
method, simplified as much as possible. A derivation was necessary because no
general method existed then, accounting for stocky beams and all profile forms and
warping influences as pure torsional buckling (e.g. for partial instability of short
beams between the lateral supports of long beams and for thin walled profiles with
EI =EI, ) with all possible eccentrically loadings and all initial displacements

whereby the failure criterion was satisfied. The, from this derived interaction relation
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between buckling and lateral buckling, shows that stresses are always below the
bending strength and compression strength. This was tested by consultants and
designers around 1990. Curious is that now suddenly in the thesis is stated that the
pure lateral buckling of the TGB is above the bending strength, even despite of the
condition k, =1 for slenderness below that of the bending test specimen. Thus

below 160, because L/h =18 and h/b=2.56 and A, =+/12-L/b=+12-46 =160 . This

means that for lower slenderness according to Fig.B8.3 and B8.4 of the thesis, not the
right strengths are inserted what, by the applied wrong failure criterion (by the w, -

variable splitting) led to too low strengths. The precise adaptation of the iterative
calculation and the Ansys calculation in figures B8.3 etc. only is possible by the
insertion of the same wrong failure criterion in the finite element method. These
lower strength values only partially explain the lower values with respect to the
TGB-values. The figures B8.3 to B8.6 show an interpretation mistake of too high pure
TGB - lateral buckling strengths (on the horizontal axis) where the kinking point is
displaced proportionally. The error thus is solely in k, .. When this lateral buckling

strength is reduced to the same Ansys-strength value, the kink moves proportionally
along the line through the zero point and the kink point and remains below the
Ansys line as to be expected by the in 2 directions regarded and eliminated initial
displacements and by the safe neglecting of terms of the theoretical equation. (Only
the kink of the left Fig. B8.5 is wrong by a calculation error). In the pre-publication of
thesis and article in the Houtconstructeur, this lateral buckling strength was found to
be right, but then the kinking point was found to be totally wrong (by a calculation
error). Now it thus is found to be the other way around. Because the error of the
thesis of the lateral buckling strength is not found for slender beams, the error is
caused by an error in k. . for low slenderness and thus by an error in the adaptation

formula to the bending strength of the bending test (prescribed in 1986 by a marking
line besides the text in the CIB-Eurocode draft) or by the interpretation of the
loading. This loading is based in the TGB on the mean moment of the middle part of
the beam. In the TGB, different from the Eurocode, the occurring stress is not
compared with the first order stress so that not the critical values should be enlarged
with the theoretical moment distribution factor (table 1 of [B]). It is clear that this is
done in the figures of the thesis, giving too high values by a factor of about 1.3 for a
point loading and a factor 1.1 for a distributed loading. This has to be corrected and
the performed TGB-correction should be rectified.

G. - History

The thesis of W] Raven was published before in 2001 and was rejected as method by
the TGB-Timber Committee. An extended correction of 30 pages by this Committee
with comments, including 15 pages on the failure criterion and wood mechanics, was
addressed to Raven. However, his rejected uncorrected paper was published in the
Houtconstructeur, (now as “Uitgave 01-3”), while the TGB-correction was banned
from publication. Comparable extended comments were later made on the Thesis
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and still later on the article for Heron. Derivations, as given here in chapter 2, were
proposed, in order to bring corrections as further developments of the first working
hypotheses of the thesis. Astonishing, the article was accepted by Heron without any
correction of the severe errors (in mathematics and wood mechanics), against the
judgment of the review, (showing Heron to be a friends club and not a scientific
journal). The reviewer was the expert on this matter having written the TGB Timber
Code and derived 20 years ago, the by Raven wrongly applied special stability
equations with the conditions of applicability and has done the experimental
research of damage increase on full scale timber beams with the for the theory
necessary perfect boundary conditions. Astonishing again, also the comment on the
thesis and on the article can not be published in media of the Timber designers
Union (the “Vereniging van Houtconstucteurs”) and the Board of the Union even did
not react on the regular appeal-procedure of a member against this censorship. This
means that the board of the “Vereniging van Houtconstucteurs” is fully responsible
for the damage caused by the application of this method of the thesis. It further
means that a warning is necessary that Dutch timber designers probably can not be
trusted by the severe lack of information and of education (by the authors).
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