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Summary

One of the conclusions of the stability group of CIB-WI8A was that the Code must
allow for analytical solutions for stability design based on quasi linear behaviour and
must rever to these methods (p.e. to the Larsen-Theilgaard method for columns).
Although a new parabolic failure criterion for bending with compression is proposed
for the Eurocode, based on glulam simulation, the interaction equation for in plane
buckling of the code, being applicable for short columns as well, suggests a much
less curved failure criterion. It therefore could be seen as a task of the stability
group to reconsider the failure criterien,

For that purpose a derivation is given of a consistent simple improved failure crite-
rion for bending with compression, that may account for the influence of quality and
moisture content, leads to simple interaction equations for beam-columns and may
meet the requirements of the Eurocode.

Together with the proposal of CIB-paper 23-15-2 a possible consistent design method
for braced and free beam-columns is proposed for the Furocode and is used in the
new Dutch Code.

In the appendix an explanation is given of the bearing- and shear strength.

Introduction

At the CIB-WIi8-meeting in Lisbon 1990, a proposal for stability design was given,
(paper 23-15-2), based on the quasi linear approach, as is used in timber engineering,
and on a lower bound failure criterion for bending and compression as, for instance,
can be deduced from the publication in the proceedings of the IUFRO 1982 paper 24.
This lower bound criterion was felt to be too conservative for all cases and a diffe-
rentiation ought to be possible for the different cases as for different moisture con-
tents and grades.

Becauise pure experimental design methods should not be used and the proposed
methods for stability design are based on the second order stress theory, there
must be agreement on the failure criterion to be used. Therefore a discussion is
given here of this criterion for bending with compression that is suitable for analy-
tical solutions and for the Eurocode and is verified by the experimental research of
the above mentioned IUFRO-paper 24.

The criterion should account for the elastic-plastic behaviour of wood, showing a
plastic failure in compression with a high deformation capacity (like steel) and brittle-
like failure in tension {thus showing a volume effect for tension). Thus after the
flow strain at the end of the linear range, it need not be assumed (as for steel) that
there is a limiting ultimate strain in compression because there is no indication of
such a limit (Pure plastic flow is possible in a compression test if it is managed to
keep the system stable at flow). For tension it can be assumed that the flow strain

at the end of the elastic stage is also the ultimate strain.



Discussion of the basic equations for beam-columns

The stability equations for beam-columns, proposed in CIB-W18A-paper 23-15-2, are
based on the quasi linear approach. In principle if a beam~column is elastic plastic,
the sectional properties along the length of the member are not constant. The analy-
sis then can be based on a deflection method assuming the deflected shape of the
beam-column by a simple function such as an orthogonal function (depending upon
the applied loading and boundary conditions) and establishing equilibrium at least at
the end and at the most yielded cross section. For this purpose the equilibrium equa-
tions of Chen and Atsuta where chosen and extended for lateral loading. The deriva-
tion of these equations is based on the assumption that the warping torsional rigidity
and the St, Venant torsional rigidity do not alter during yielding of the cross section.
(This applies for lateral buckling by bending for low quality wood where the yielding
is small or neglectable). When the influence of the smaller terms are neglected the
dominating linear terms remain, leading to the proposed equations for beam-columns
of paper 23-15-2 (It is assumed that the initial excentricity for compressional loading
alone is chosen to be high enough to be able to neglect these non-linear terms).
The assumption of a quasi constant warping rigidity is in accordance with the method
for wood to express the bending strength in an equivalent linear behaviour up to
failure with an equivalent bending modulus. So the two opposite bending parts de-
termining the warping rigidity are quasi linear and with that also the warping rigidi-
ty. This warping rigidity dominates for profiles {when "buckling” of the compressed
flange is determining) and for short columns and the assumption of constant torsi-
onal rigidity has a minor influence.

For wood it is also a use to estimate also for torsion and shear the quasi elastic
values. Because these shear stresses act only in the elastic part of the section a
compensation for the reduced area is given by low ultimate shear strengths and a
low torsional shear modulus. This thus has to be applied for high grade timber and
for bending with compression.

The elastic-plastic approach doesn't account for the Engesser effect for low grade
timber when by bending and compression just both the flaw stress in compression
and and ultimate tensile stress is reached. For this case a correction is possible by

"o

assuming earlier flow by increasing the value "s" of the failure criterion (see further).

Derivation of the failure criterion for bending with compression

The derivation can be based on the elastic-plastic behaviour of wood with the usual
starting points:

The modulus of elasticity is the same for compression and tension;

Plane sections remain plane (symmetry condition for bending);

In tension the behaviour is elastic untill failure at a critical stress or strain. How-



ever this stress may increase according to the volume effect. This effect can be ac-
counted for in the parameter "s" of the fatlure criterion,
In compression the behaviour is elastic-plastic, being linear to the flow straln and

then showing constant stress at increasing plastic strain,

Equilibrium of a section loaded in bending and compression.

For a beam of width b loaded by a moment M and normal

BN force N is according to the figure:
X
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or for the ultimate state: O = Ft’ o, = fc, then Oy = fm, eq.(5} becomes:
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It is seen that: Y = 1 - X  as lower bound for high values of s and for s = 1.67:
Y~nt-X as is proposed now in the Code based on glulam.

Eq.(5) provides a simple design criterion that can be further simplified as shown

later.
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Curvature

The relation for the radius of bending is with s = Gt/fcz

e e, e les) £ U+ FC(1+S)2 20

_ m (s~ 1)

t
R h-x  h-~x  E(h-~-x)} 2Eh T BEh 4(3s - 1) (6)

A

To eliminate the varying values of s along the beam this can be approximated to:

® = de' (S+”3= zcm’ (S+1)42'0£N *ij'h-OB (1.2553“@5&)
Eh 4(3s - 1) Eh  4(3s - 1) Fc Eh fc ' FC f’C
(7)
giving the curvature in the elastic-plastic range. In the elastic
s M part of the column: x = 2¢_ /(Eh) (< 2f /(Eh)
4(3s - 1)° It is seen that a reduced :::odu]us has (t:o be applied as quasi
i 1 linear moduius for extreme cases {s = 3).
1.25 0.85 '
1.5 0.8
L75 0.8
2 0.8
2.25 0.8
2.5 0.9
2.75 0.9
3 1




Elimination of (h - x) from (2) and (6) gives:

2 E N E
(s + 0" = 2xh=—(1 - === = 2xh={1 - X) (8)
fC Fcbh fc
*bendin
or for a combination with a normal force N:  x = ——nclllf (9)

1 -X

Extreme values

For high quality wood is ft/fc 7 1.3 according to the measured values of the tension
and compression strength tests of paper 24 of IUFRO (982, Because there is a strong
volume effect (kdis) for tension only, increasing "s", and moisture effects reducing
mainly compression and not tension, also increasing "s", the value of "s" may reach
values of about 3 to 4 for high quality green wood (especially for small dimensions
when the volume effect is the highest and changing moisture content effects are
quick), Mechano-sorptive slip is much higher for compression than for tension and
may differ nearly one order at working stress level. If it therefore is assumed, as
first approximation, that tension is not affected, the slope of th elastic line must
be two times steeper for a two times increase of deformation by this slip, This
causes the stress distribution according to the figure below, differing an internal
equilibrium system with the initial stresses to carry the same moment. Thus "s" may
change from 1 to 3 and eq.(11) should be used for these cases. The increase of defor-
mation by a factor 2 may occur within m.c. class 2 by the 6% m.c. change at working
stess level. Thus it can be predicted that a long lasting climate change may strongly
flatten the failure criterion for high loaded structures and thus flattens the failure

criterion of the long term strength,

//
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Prediction of stress re-distribution by mechano-sorptive slip

For s = 3. as for instance applies for wet clear wood or for every grade when a

climate change occurs, eq.(5') becomes:

Y= | -X +05X-{1 - X} (10)
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and the maximum deviation from the line: ¥ = { - X is obtained for X = 0.5. Then
the third term of the right side of eq.(10) is: 0.13 on:
Y = 1.13 - X. The stopes are about: Y' x=0 = = 05 and Y' Y=y =T 1.5 (see fig. below)

14

M - N ~ diagram for high quality wood

This curve will be flattened by the higher volume effect for bending with compres-
sion than for bending alone, especially for higher values of X and by the Engesser

effect. So the failure condition for this case will be not far from:

Y + X =1 (11}

as earlier was proposed in the Eurocode.

For very low quality wood Is according to the mentioned paper 24: ft/fc ~ 3/4 and
for bending failure f is determining and the compression stress will be equal to i’t.
This means that s = | at bending and "s" decreases at application of compression.
The boundary value, where "s" becomes constant, is reached when in eq.(2), x = 0 or
when: X = (1 - s)/2, Thus for s = 374 is X = 1/8. For X = 1/8 is eq.(5'):

Y=1-X+32-X-(1 - X} {12)
and the slope is: Y' = 2.2 - 6.4 X. thus the curve shows a maximum for X = 0.34,
giving Yl = 1.38. At X = 1/8 is Y = 1.22 and the siope is Y' = 1.4, For X = 0 is:

nax
Y =1 and fm = fc (s = 1).

The curve shows that there is quite a reserve with respect to line, eq.{11}, and eq.(12)
of this curve will be applicable if major defects determ the tensile strength follow-
ing fracture mechanics thus showing no volume effect. For common cases the curve
will be flattened by the volume effect of the tensife strength as will be shown in the

following section. Around Y the point of first flow of the section in this case, a

max’
correction for the Engesser effect is necessary. Because this effect acts as an earlier

flow of the section this can be done by increasing “s", flattening the curve there.
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M -~ N - diagram for low quality wood

Curves like eq.(12), or based on the § % lower percentiles of the combined compres-
sion with bending strengths of the lowest grade are not general applicable because ac-
counting for these lower percentiles is advantagecus for the failure criterion.

To use a curved failure criterion at constant moisture conditions, there must be a
guarantee that the compression strength is-high encugh in all circumstances. Accor-
ding to the strength class system of the Code the value of s is close to s » 1 for
fowest grade (as will be shown later) but the different influence of the moisture
content on tension and compression is not introduced in the code. Thus there is a
problem that a separate moisture effect on s has to be introduced in the Code.

When for the lowest strength class a value of s & {is Introduced eq.(5") becomes:
Y=1-X+2X({-X (13)

and: Y' = 1 - 4X, showing a maximum at: X = 0.25, being: Y = 9/8. Y is again { at
X = 0.5 Thus an approximation of eq.(13) for these calculations can be in the form:

Y= 20 - X) s (14)

(also in agreement with the Code te use nowhere values above Y = f).
For wet conditions "s" will be a factor 1.0 higher with respect to the vaiue at i0 ¥

m.c. and the lowest value for s will be about 1.3.

Bi~axial bending

For the combination of "double" bending in the two main directions the interaction

line will be straight (see CIB paper 18-2-1):

VY, = (15)

for low grades if there is no volume effect {tensile failure by great defects) and
this straight line will be a real lower bound. Due to the volume effect of the maxi-

mal tensile stress (acting at one point) the interaction line for combined bending



will be curved and can be represented according to paper 18-2-1 by:

13 4 y13 oy (16}
Y Z

or approximately in a linear form:

Y, + 0.7-Y,

i

1 when Y1 > Y2 (17)
O.?-Yi + Y2 =1 when Y1 < Y2 (18)

The form of this curve, eq.(16), doesn't change much when bending failure becomes
elastic-plastic for high grades and high m.c. (being a reason to maintain a quasi
linear approach for bending failure in wood).

Because the interaction line is not far from the straight line eq.(15) there is no coer-
cive reason to replace the usual applied eq.(15) by eq.(17) and (18} as strength crite-

rion.

Experimental verification
The measurements of IUFRO paper 24 are based on a sample from one mill at one
time of all grades of 2x6" Iumber, kiln dried to 14 % m.c. There were done 21 diffe-
rent tests on each 100 boards. It was tried to make a quality distinction by visual
grading. However this didn't lead to consistent differences of the different quality
classes, Thus the measured curve is for all grades and the 5 % lower percentile,
showing an advantageous failure criterion for bending with compression, is not repre-
sentative for structural timber.

It can be derived from the failure criterion that for the top-values, for lower grades,
where Y' = 0 and Y is maximal equal to Ym at X = Xm, the following applies:

(1 - Xm)2 5~ 3's

Y s— where: X =

moo{-2X m 3 (19

Thus Ym may also be expressed in s, being:

9.(1 + 5)?

m - 16-(3-s - 1) (20)

These relations can be used by constructing the interachtion curve for bending failu-
re with compression,

In the fiure below the measured values of the interaction curve are given with the
S % percentiles for the 0.9 m long members. This may be regarded as the failure
criterion because of the only small buckling effects (lateral buckling in the weak
direction was prevented).

It can be seen that a good fit of the derived curve is possible by:



s = 2.33 for the 95 percentile,
s = 1.67 for the 50 percentile, showing the top-value at X, = 0glving Y =1,
s = 0.95 for the 5 percentile, showing the top-value at Xm = 0.27 giving Ym = 1.16,

This shoews that “s" is about 1.7 times higher for the 95 percentile as is to be expec-
ted from the tensile test. This can be explained by the volume effect as mentioned
in paper 24. At bending already 0.4 times the helght of the beam flows in compres~
sion for this high percentile and thus the volume factor is higher than for linear
bending when compared with pure tension failure of the member. The value of 1.7 is
in accordance with the usual applied k = 5 value of the Weibull model. For the 50
percentile this factor is 1.67, where the Weibull value is 1.66 and for the 5 percentile
this factor is about 1.5, where the Weibull value for bending without flow of the
compression zone predicts 1.64. This difference of 10 % is not astonishing because
net the pure tension strengths of the members were measured but combined values
with bending and the percentiles were found by transposing the results into polar
coordinates, using the found radius for each percentile. The values above show that
it is reasonable to account for the volume effect by the stress distribution that is
incorporated in the bending strength, replacing s = ft/Fc {ratio of tensile/compres-
sional strengths) by: s = fm/FC {ratio of bending/compression strenghts) or to use

safely s =~ I.?-Ft/fc.

AXIAL COMPRESSION N
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Measurements of proceedings [UFRO Boras 1982, paper 24.

Higher values of "s” are to be expected from the measurements of paper 24 at higher
moisture contents. The mentioned measured values of "s" were for a m.c. of 15 %.

At 25 % m.c. "s" will be about a factor 1.3 higher than at 15 % m.c.. Thus:



for the 95 percentile at 25 % m.c., s ~ 3.1;

for the 50 percentile at 25 % m.c., s & 2.2, and

for the 5 percentile at 25 % m.c,, s & 1.2,

However the Code makes no distinction between compression and tension strengths
depending on molsture content and other moisture effects and if that is retained
these lower bound values have to be used or a separate moisture effect on "s" has
to be introduced.

The results of paper 19-12-2 show that also for gluelam a volume effect has to be

assumed.

Strenth classes

To use a curved failure criterion for constant moisture conditions, there must be a
guarantee that the compression strength is high enough with respect to the tensile
strength in all circumstances. the strength classes may contain timber with a com-

pression strength value of a lower class giving values of s » 1.7-ft/fc:

s - values 15% m.c. 25% m.c.
class C? to C10 1.7 ~ 2.2
C‘3 to C6 1.3 ~ 1.7
C1 and C2 ~ 1.2

[t can be seen that the now in the Eurocode proposed parabolic criterion wherefore
s = 1.67, applies or is safe at {5% m.c. but is unsafe for the 4 highest classes above

15% and a m.c. correction is necessary and can be:

Class C7 to CIO: s = 1‘7/kmoist (21)
C1 to Cé: s = 1'3/kmoist (22)
with: kmoist =1 - 25w - 013 (w is relative moisture content)

Shear strength

Another reduction of the curved form of the failure criterion for bending with com-
pression can be due to shear. This is derived in the appendix. Because this criterion
is a straigth line, there can always be a cut off of a curved failure criterion and it
is necessary to introduce this additional criterion in the Code when a curved criterion

for bending with compression is used thus:
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Conclusion
~ It is shown that a simple design failure criterion for bending and compression is
possible that can be explained by the elastic-full-plastic approach, with lincar elas-
ticity for tension up te failure, determined by the volume effect, and by unlimited
flow in compression. This criterion:
. 4-X-10 - X)

3-s -1
accounts for quality and moisture effects by the value of "s".

Y=1-X

- For s = 1.67 this is:

Y =1- X%
the new criterion of the Eurocode, applicable at constant m.c. except for the highest
four grades above 15% m.c. Here s = 2.3 is safe giving: Y =1 - X/3 - 2x*/3.
~ Because there will always be a linear cut off of the failure criterion, a simple
[inear approach of the parabolic failure criterion is appropriate, and lines can be
drawn through the Y values of point X = 0 and point X = 0.5 and the Y values of

the points X = 1 and X = 0.5 (avoiding too high estimates at Ym}.

X

10

0 T ‘
0‘5 1.0

~< ¥

bi~linear failure criterium for bending with compression and shear

Thus the failure criterion then becomes in general:
Y+ceX=1 when X < 0.5 with ¢ = {s - 1)/(s - 0.33)

(s - 0.33) /(s + 0.33)
Fmtcl/fv,d . {or eq.(23))

CZY + X =1 when X > 0.5 with <,

or when smaller: c,

|

where for rectangular cross sections:

Y = M : X o= N and "s" is given by eq.(21) and (22).

£ bh? brhf g
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Or as proposal for the Code:
CZY + c1X 1
with: c, = 1 and ¢, = (s - 1)/s + 0.33) when X = 0.5,

or: ¢, = (s - 0.33) /(s + 0.33) = Fmtd/(Fv,dGm,d) and c = 1, when X = 0.5,

The advantage of this criterion is that simple consistent interaction equations are
possible for twist-bend buckling., The proposed stability equations of CIB paper

23-15-2 can be retained replacing the compression strength fc by a higher value:
fc-%gg below the 50% normal load level or:

replacing the bending strength Fm by a higher value:

f" S+0.33

ms-03% above the 50¥ normal load level.

- As lower bound:

- when a climate change can be expected at high loading;

at high shear loading;

for reinforced timber, improved gluelam or veneerwood, wet clear wood, etc.,

c, =c, = 1 in the criterion above and the criterion becomes:

Y=1-X
and this lower bound criterion can better be retained in the Code (as is done for the

Dutch Code) because of the possible restrictions on the use of a parabolic criterion,



Appendix
a. Bearing strenpth perpendicular to the grain of locally loaded blocks

The compression strength perpendicular to the grain may increase due to confined
dilatation perpendicular to the loading direction.

From the figure below it can be seen that the strength increases with the increasing
possibility op spreading of the load, Further it is seen that there is a maximal spread-
ing of about 4 x h. An increase of the strength is then only possible by increasing h.

At plastic Flow the increase of strength is about proportional with L/s (see figure).

FS=C'FC‘90']I’L/S = 1.08‘{"(:‘90- L/s (1)

4
At lower strain this is about proportional to y/L/s when the cube strength is not
regarded and it is seen that this empirical relation, proposed for the Eurocode, is

not very well to represent the ultimate state.
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Bearing strength |, specimen 15x15 cm, lengths: 15, 30, 45, 60, 75 cm, of a to e, [1]

The dependence of the strength upon spreading can be explained by the equilibrium
method of the theory of plasticity.
In the plastic region a stress field can be constructed in the specimen that satisfies

the equilibrium conditions:

U T e, Tl @
Ix dy tOx Ay '

and the boundary conditions and nowhere surmounts the failure criterion.

This failure criterion is of the Mohr-type in the radial plane: I/Fv =41~ Oc,o/fc,o'

[2], or can be approached by a Coulomb criterion. In the radial plane an inscibed

Tresca criterion can be used being a maximum stress criterion:



(01 - 02)/2 =k = f\'f (3)

However the resuit of the derivation does not depend much on the failure criterion
used. The Coulomb or the Mohr criterion gives a higher value of ¢ of eq.(1} than

the Tresca criterion, the strength f however is related to a prism strength and

C,90
is lower than the cube strength associated with the Tresca criterion, Both criteria
therefore will give comparable values of f_.

Although "shear-flow" is in the weak direction as in the compression test perpendi-
cular to the grain, the behaviour is simular to a reinforced material (in the strong
direction) having the shear strength of the wealk direction and confined pressure may
build up in all directions when there is friction between bearing plate and specimen
in the width direction where the width of the bearing plate is equal to the width of
the block. Because failure, according to a shear plane in the weak direction, not af-
fecting the reinforcement, is not determining in this case, the upper stress is deter-
mined by the spreading possibility in the strong direction.

Equations (1) to (3) can be written as equations along discontinuity lines {(characte-
ristics as for instance Prandtl slip lines) and from the construction of these lines it

follows that o = 1kY + Ty and 9 & 0.62- [n(2H/s), see [3], giving:

Oy~ 9y = 2,48 k- In(2H/s) (1)

H

"Slip-lines” determining the direction of the main stresses

108 C
08; C )‘:}I-ln(x)
Da:}" /"‘ TTONTT = e e
0.61 #

S R T S .
wm T 1 \] T M

Function C



and because ¢ s = g 'L (see figure below) is: os(i - s/Ly = 248 k- In(2ZH/8). Further
the construction for a finite block gives the indication that the spreading of the
stress is below: L = 2H + s or: H ~ (L - s)/2 when H > s, thus: L/s > 3 (Below this
value the spreading is less strong and finally failure is simular to the cube test).

Substitution of the values for Gy and H in eq.(4} gives:

oy = 248 k- ln(— - 1) %//S:_ J1L/s =248k C/Lss (5)

where C is a function of L/s only and can be regarded constant of about 0.78,
Thus:
o, = 0.97 2k -y L/s (6}

The value of k Follows from the compression test (cube test) with o, = Fc oo and

g, = 0, or k = fc,qo/z' Thus eq.(0) becomes:

Fs = c-FC'qO-V I./s with ¢ # { (7)

The higher experimental value of ¢ given in eq.{1) shows the lower bound approach
of the chosen method (the real slip-lines must give a higher value). At lower flow
strains ¢ also will be lower in experiments. Thus ¢ gives the possibility to adapt the

model to test results.

Eq.(7) provides a basis for design rules and is able to explain the different results,
As mentioned before the rules of the Eurocode based on 4ﬁ_7$ suggest to be based
on small deformations {and not the ultimate state) and the dependence on I is
omitted in the Code. However for very small values of H there is hardly any spread-
ing and the given rules don't apply. Increase in bearing is then only possible after
flow at hardening if the structure remains stable in that state. The given rules seem
to apply for a special case: H = (a + Il)/3 = 250/3 = 84 mm. This has to be men-
tioned in the Code.

As discussed in paper CIB-WI8/5-10-1, the French rules show the dependence of H

and the results are closer to the the ultimate state (see table):

f/f
s T C,90 ; P ! 4 '”
o/H ‘
s/H [
> 1.5 0.5 0 | i ;
{ 2 15 125 1 *
2 15 125 112 9 '
s 3 { { 1 1 f
[

When ¢/H = (L - s}/2H 2 1.5, thus when L = 3H + s, the maximal spreading is reach-

ed according to the table and to the first figure above of {1). (This indicates friction



v

of the plates in the strong direction because without that: L

For s/H = 3.

~ 2H + s is expected).

it is assumed that in the middle the same conditions appear as in the

cube test. However this is even too low when friction is ignored here and test values

will be higher than the table values. The same applies for ¢

0 when L » s, only

without friction (and L = s) the situation is comparable with the cube test and test

vaiues will be higher than . The confined pressure may be build up according to

the following Ffigure.

)
W
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/23\>>/><<

A

"Failure” between two plates

The influence of no friction along the bearing plate in the strong direction {(and thus

full friction in the width direction) can be assessed as lower bound by assuming that

only symmetrical spreading is possible. Thus L

= 2¢ + 5. Further s/H = 3 must com-

prise s/H >> 3. ¢/H = 1.5 must be ¢/H 2 1 and the first column has to be omitted

s giving a value L

when no friction is assumed, ¢ = 0 must comprise L =
According to eq.(7) is then:
£ /f
S e I - S
c/H =L - s)/2H '

s/H

245 1 05 0 Yyt

1 2 1.7 {.4 i \
1.6 L4 1.2 1

=3 1 1 1 1

These values

~y

in eq.(7) ¢

are close to the values of the French rules and are comparable when

0.9 is used indicating that a limited flow is regarded as the ultimate

state in the French tests or that safe [ower bounds where given.

In paper CIB-

not limiting for spreading because: L < 2H + s. The determination of f

WIBA/23-0-1 test results are given of bearing in the range where H is

€,90 is done

on a specimen that is long in the strong direction and the results will be higher than

those of the compression test. However the strain chosen as failure strain was lower

than the ultimate giving compensating lower strength values. The comparison of this

compression test with the ASTM-bearing test in the paper shows that the ASTM



values are about +/3 times higher according to the theory (L/s = 3 in the ASTM=spe~
cimens).

In the following table the test results are compaired with eq.(7) and it is seen that
also non-symetrical spreading is possible of end loaded blocks because of the fric-
tion between plate and specimen (and the high value of H).

According to the Eurocode a limitting value occurs at s/L < 0.125 for central load-
ing. The results here show that for end loaded blecks the limit of kc is about k2
for s/L < 0.25. These limits are due to a local mechanism as for instance given in
the figure below. It has to be remembered that the lines are not real slip lines here
but means to construct a stress flield that satisfies equilibrium, boundary conditions
and the failure criterion. The theoreticat value of the limit of kc is higher for cen~

tral loading and it seems to be possible to obtain higher values by tests.

Fs/fc,qo B kc
measurements adaption ¢ of eq.7)
s/L central loaded end loaded central loaded end loaded
k, K, yirs  c=k/Lss k /yL/s
1 1 1 1 1 1
0.875 1.063 1.063 1.069 1 1
0.75 1.188 1.156 1.155 1.03 1
0.625 1.375 1.281 1.265 1.09 {
0.5 1.625 1.438 1.414 1.15 1
0.375 1.969 1.625 1.633 1.2 1
0.25 . 2344 1.875 2.0 1.17 0.94 limit
0.125 2.781 2,156 2.83 t limit
mean of c: 1.08 1

"slip~lines" when the plate

transfers the entire shear stress

IR

"Local failures”




For long blocks with respect to the bearing plates the maximal spreading will occur

at both plates according to the figures below.

&

PN
k)ﬁc; ) WS fﬁa

1

ks

i
v 350 el -t 180 = Lid

5
m# cm_!

LA

<A
/f;”fh:né

- 1/? -ZM‘cmz

r;/////. cxs

350 ]1-1514

&}

A 201

[_"f*?ﬂ 7
A-m:i!._‘ ]

bl

Y

20 -

. Local loading perp. to the grain [1] Graf

5 i

75 mm 24

From the figure it follows that: s + 3o =

o = 0.5 +

L -5
6H

L+ 3

Possible spreading

- o) H. Thus:

and thus the equivalent spread'mg factor {(of the strength determining plate) is:

L'_ s + 3aH , 34 sy _

s s =1 2305 ()H ) =
With H ={7.9; L = 35; b =

kc,f)o = ¢ 0.5 + 800/s'b = 1.1

leading to the values of F at 5 mm deformation (see fig.) of the curves:

0.5 +

0.5 + 800/s b

3H+ L

2s

18.1 em according to the measurements of O. Graf is:

6 - 2: 30 - 3: 36 - 5: 43 - 6 52 l(gf/cm , about the same as the measurements.

The highest maximum is not shown (at f = s-b =
100 kgf/em?.

= 75 is measured, the.maximum value of k

to the last formula is: FS =

mechanism.

75/16 =

{giving an upper bound value) of about 5.5 to 06).

Becatise f"s

25.2, see fig.).

However this will be cut off by a local

Predicted according

c,%0

is at least

4.7 (close to the theoretical value obtained from a local failure mechanism

The measurements suggest a higher spreading possibility than to: s + 3all. However

the model applies for high plastic deformation and after splitting softening may
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occur simular to the specimen with 30 cm length in the first figure of this appendix.
Because complete curves are not given, rules have to be based on the limited defor-

mation {~ 5 mm here).

It can be concluded that the theory is able to explain the, contradictory, test results
and design proposals of the Furocode, the French rules, the measurements of Suen-

son, Graf, CIB-WI18A/23~6~-1 and design rules should be adapted in this way.

As proposal for the Eurocode the following rules are possible for bearing blocks:

f

< - f
Gc],90,d kc:,<>o c,90,d

where:
kc‘% = Y L/s

with: L€ a+ s + 11/2; L < 3H + 5 and:
kc 90 = 2.8 when s/L 2 0.125 for central loads;
I =2 when s/L < 0.25 for end loads.

C,%0
For safe rules (when friction is only in the width direction), the conditions are:
L52a+s;Lss+Ii;Ls2H+s,
k o © 2.8 when s/ £ 0.125

c,9

For the bearing strength of a middle section of a beam between two plates of lengths

L and s is:
Kego = 1.1-/@ <5 + = At 7 -

TN T

H k—-&é—a_ i’
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These results were discussed in a small groupe after the presentation of paper CIB-
WI8A/23-6-1. The general opinion was that failure perpendicular to the grain does
not really exist and there would always occur enough hardening at the end to make
" any rule safe. It thus was decided not to present these results, However this har-
dening is only possible when the structure at failure remains stable p.e. by locking
up the failed wood. This is not always achieved in a real structure.

Further understanding of bearing is also necessary to explain the mechanism of shear
failure for loading close to the supports. Therefore the proposal for design rules
based on the start of the first stable ultimate flow state is given here as annex of

this paper and provide better and more consistent rules for the Eurocode.

b. Shear strength of beams

Shoring model:

For shear loading by a load on a beam close to the support, the bearing strength is
determining for the strength as given in appendix a. The strength is: Vu = {"Sbs when
a’h = 1 (see fig. below). Above about a/h = | the shear strength (along the grain)
can be determining (when s is fong enough) and a simular formula applies as for the
bearing strength with f;f in stead of Fc,qo that also can be given as: V= 0.67 f, bh,
where f depends on the volume effect (of the shearing plane along the grain; see
test results of [41}), For the lowest grade, that may show early failure by bending-
tension showing a linear stress distribution along the height of the beam, the shear
strength Vu according to the beam theory is the same. For higher qualities, flow in
compression may occur and the shear strength decreases while the bending strength
increases a{ccording to the bending theory.

At about ash = 1.5, depending on the grade, the bending theory may apply (showing

the same value of Vu according to the shoring {or bearing} model for loads close

to the supports).

BFEF
'

Bearing or shoring mechanism



Beam model:
When there is plastic flow in compression, shear can only be carried in the elastic

region. According to the figure below is lor bending:

& bt - X
v, =500 (1-5) (1)
’% it , 2'fc
L= % =757 (2)
b4 1 ft + fc
& or from eq.(1) and (2):
fi-f
1 9 t ¢ _2 e o
h-x g u_g'f’& + fc'bh—CS Fy'bh
or:
1 2.0 .7
k L F o o= el (3)
5 ’ Sl
v fc
where f is the quasi linear shear strength,
For bending with compression is:
V = z.p'.b.l .(1 - ﬁ) = _Z—,f-" bl .(1 - __N_.>_..%_£E~ = g.f bl .(1 - ____Nm)
T3y ARG b T+ - 37020 [ bh
C C t c
or:
v (1 - Ny v oy -
V=V, (1 Nc) = v, {1 -x) (4)

For failure in bending and in shear there is a critical value of the shear slenderness
M, /V h where the ultimate bending strength is reached (g, = f} and at the same

time the ultimate shear stress (¢ = f’v) is reached. In a four point bending test is:

3 - F
1Y

Mu/Vuh =a /h = eyl

¥ .

=

f

1 - om o

< %rh IF, 3 for most
A . | . _
i strength classes (that may contain
F— 1
‘? a timber with a bending strength

v value of one higher class).

Above this critical value shear is not determining and there is bending failure. Below
this value rotation and bending strength is reduced by the high shear force reducing
the length x until x = 0. Then the maximal possible shear strength is reached:

- 3 g g 2 _ oot yp 2
V, = 0.67f bh at a moment: M = [ _bh"/6 = f bh"/6 (s f{bh"/6).

When both terms of eq.(4) are multiplied by 2. then this equation becomes:

- - - M .
VaC = Vuac(i - X) = Mu“, - X) = — 8. o



%-gc:i—x or:  Yfla/a) =1-X

being a straight line and giving a cut off of a curved failure criterion, See for instan-
" ce the figure below where the now proposed parabolic criterion is given. Only for
a’h =z ~ 6, the situation of the loads in the 4-points bending test, there is no cut
off of the failure criterion. For loads closer to the support this reduction has to be
accounted for bending with compression.

The experimental verification of this model is p.e. given by the

test results of paper CIB-WI18/24~10~1

Although for an explanation of test results a refined elastic plastic model has to
be used, accbuﬂting precisely for the volume effects of shear and bending-tension
and with adapted compression strengths at reduce rotation according to the work-
curve of compressional failure, the method can be applied in its simple form as lo-
wer bound and has to be used when a non-linear faiture criterion for bending with

compression ig introduced.

R 4]

Ay
7

2

,

Cut off of the parabolic failure criterion for combined bending and compression

by hkigh shear ioading

Eplanation of the test results of paper CIB- Wi8/24-10-1

l? 5 J,p | : N
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For the beam on 3 supports a cut of the beam at the middle support at point B will

I

7
r.
¥

give a rotation at B by the loading P of: ¢ = PL/16El, The shear strain will give no

rotation at B, Because the beam is fixed at point B the moment at the support will
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close the gap by ¢' = MB/SEI. However the shear by the reaction MB/L of this mo-
ment will also close the gap by: v = v/G =~ MB/(LAG). Thus:

2
. PL . MB= Mg ori M. = 3PL 1
¢ 7Y TIGET T TAG - 3E] : B™H6 L P2

With: h = 45; L =270 is; My = 0.9-3PL/16. Thus op = 0.9:50 = 45 MPa (see paper).
Now the field- and support moments are equal but bending failures are initiated
from the field if there is a volume effect.

The shear slenderness: M/Vh of the field moment at the side of the free support is:
M/Vh = L/2h = 3 is not determining. At the midsupport is MB/VBh ~ L/4h =~ 1.5,

In general is:

f
Vhl% = 3: ) 114—13‘:- or at point B: 1,5 = QS—HE% giving: s ~ 1
v

showing that there is just no plastic flow and indicating that; fc 7 45 MPa and the
maximal shear stress is: f;, & 7.6 MPa.

The value of fc may be used to explain the strength of the centre-point loading,
single span test of the paper where: M/Vh = L/2h = 3 and FV = 5.4 MPa:

3 = GSLHZL—‘?I or s =156 giving a bending strength of:

O = 45.(3-1.56 - /(1 + 1.56) = 64.9 MPa (measured is 64.8 MPa)

The pure bending strength of the 4 point bending test is: Fm = 77.8 MPa. Thus:

3s - 1

_ ic.9S
77.8 = 45 P

or s =215

The maximal shear stress of 7.6 occurs at the neutral line. For shear failure at plas-
tic flow in compression the maximal shear stress is combined with a tension stress
and will be about 0.9 times lower. Thus: f; = O.9-f;, = 0970 = 6.8 MPa.

This means that the shear strength at the maximal bending strength will be:

2f"
- v — -_—
Im = ‘m" = 2'6.8/(1 + 215) = 4.3 MPa

and will occur at: ash = (3-2.15 - 1)-45/(3.15-4-4.3) = 4.5.

Thus the 4-point bending test can be repeated with loads at a distance of 203 mm
from the support to obtain the shear strength at ultimate bending.

It is assumed that corrections for volume effects, as for clear wood, can be ignored
here for LVL (this has to be checked Ffirst).

It then can be concluded that the quasi linear shear strength has to be 4.3 MPa in
order to predict a correct reduction of the bending strength by ultimate shear con-

trol. This of course is a prediction because data are lacking.



