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Summary

The design rules of the Eurocode for lateral buckling are not general enough and not consis—
tent and need to be revised. A general approach is therefore given of the buckling and
twist~bend buckling problem of symmetrical profiles loaded in bending in the two main direc—
tions and at the same time in torsion and compression.

The model, according to the second order stress theory, gives an extension of the existing
models by accounting for eccentrical lateral loading, for instance by purlin hangers, in com-
bination with bending in the horizontai direction (wind loading etc.), with the influence of the
initial eccentricities, the warping rigidity and the failure criterion.

The fallure critericn is related to a linear behaviour until fracture, because the experimental
strength of the beam is based on this approach.

Local buckling of thin webs and flanges is assumed to be prevented by stiffeners. For the
stability calculation of this case, the Eurocode or [1] can be foliowed.

The derivation is based on an extension of the general differential equations of Chen and
Atsuta [2], to eccentrically applied lateral loading. These equations can be modified to the
form of those of Brininghoff [6], with an equivalent torsional rigidity to account for the
infiuence of warping and the Wagner effect. (The Wagner effect is the torsional moment
appearing by the components of the normal stresses in a warped cross section).

The solution of the differential equations is done by the Galerkin method and resuits in a
generalisation of the solution of 161,

Application of of the fallure criterion gives comparable expressions as given by Larsen [41],
[5], extended for eccentrically applied lateral loading.

The equations of Brininghoff and Larsen are thus special cases of the general expression,
and are verified by tests for these and other cases [31, [51, [6] {and thesis work Stevin-
laboratory).

Conclusion

The theory gives an extension of the existing methods to the general loading case of eccen-
trically loading in all directions {double bending with torsion and compression) and predicts
low instability values for a short beam with a low warping stiffness, loaded laterally on the
compression side. The existing design methods are unsafe for this case and it can be shown
that the warping stiffness of rectangular beams is not neglectable in this situation.

The method provides more general and better rules for the Eurocode and will be proposed
to replace art. 5.1.6, 5.1.10, 5.2.6 (see appendix 2).
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bending moment about the x-axis and y-axis

first derivative of M, to z, along the axis of the beam

torsional moment about the beam-axis

ultimate moment for failure = firW (Ultimate stress times moment of rigidity)
theoretical twist-bend moment for pure bending and compression = F ey'Glm
theoretical twist-bend moment for lateral loading = Mk-tx

is MC for £ = 0, so for bending without compression

real twist-bend moment with initial eccentricities (lateral buckling)

normal force

Eulerian buckling load = m2El/L?

buckling load {(with initial eccentricities)

Ultimate compressive force = f A (ultimate normal stress times section-area)
twist buckling force = Gly-(1+ (€1, /@1 L))/ (1, + 1)

deformations In resp. x~ and y- axis

differentiation of u and v with respect to z

rotation about the z- axis

factor due to the eccentricity of the lateral load

Is: L/1 = L/ A/l slenderness

compressive stress; f - 18 the compressive strength

bending stress; fb is the bending strength

bending rigidity about resp. the x~ axis and y- axis

warping rigidity

Wagner effect = - F-(I_ + | )/A 2

X oy F el
equivalent torsional rigidity for high beams = G!t-(‘l - {-_—-)-(1 + E )
Torsional rigidity (St. Venant) ¢ Gly

equivatent torsional rigidity = Giv-ﬁ - 'Eex}'“““'"“”’”*1 = E1I /E"]X

moment of rigidity

eccentricity of the lateral loading
lateral {oading

is: W/A, radius of rigidity

span, or effective buckling length

Area of the cross-section of the beam



1. Introduction

The stability design of the Eurocode is not general and consistent enough. For instance, in
the Eurocode the warping rigidity is neglected for free beams without a horizontal bracing.
For braced beams however the torsional rigidity Is neglected. Further the initial eccentrici-
ties are regarded for braced beams and neglected for free beams although the reversed
would have been better. The given influence of the point of application of the lateral loading
on | of applies only for long beams. So a more general approach is necessary. However the
known calculation methods for twist-bend buckling are Incomplete and often mutuaily con-
tradictory and need to be extended.

By Chen and Atsuta [2], general equations are given for thin walled beams. However solu-
tions are only giiven for pure bending with compression {thus without lateral loading).

The influence of lateral loading is given by Halasz and Cziesseilski [3], however without ini-
tial eccentricities and without normal loading. The influence of warping is also not regarded
there and thus there is no distinction between |-beams and box-beams. This is well done
in L41 for |-beams, while the warping rigidity of rectangular- and box-beams is neglected.
By Larsen [5], general equations are given for the case of pure bending and compressicn,
including the Influence of initial eccentricities and the failure criterion. The warping rigidity
is howaver neglected (as also is done by all authors for rectangular beams) although there
is accounted for warping deformation by the reduction of the torsional rigidity by the nega-
tive Wagner effect. This means that it Is assumed that there is an unrestrained warping.
However restraint warping and warping rigidity is always assumed to exist for thin-webbed
beams and trusses (beams with low torsional rigidity}, for instance in most regulations, be-
cause the twist-bend buckling of these profiles is calculated from the column buckling of
the compressed flange, what is equivalent to a dominating warping rigidity.

By Brininghoff [63, the influence of the eccentricity of the lateral loading and the initial ec
centricities are regarded for high rectangular beams. However the failure criterion is not
regarded and also the warping rigidity neglected, as is only right for long rectangular beams.
Because comparable general equations, including the influence of warping and the failure cri-
terion, for the general loading case are lacking for beams and for thin-webbed beams, the

derivation is given here.

2 Stabllity of a symmetrical beam loaded in compression and double bending

2.1 General differential equations

From equilibrium of a deformed element, the general differential equations are given by Chen

and Atsuta ([23, eq.(2.179a)}. For symmetrically beams these simplify to (see notations):
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fig. 1

Further simplification is possible by omitting small terms. This can be seen by using the first
term of the Fourler expansion of the variables.

For simply supported beams is for Instance: u = u-sin(wz/L) and M = KAt-cos(n:-z/L)
and the term: u™M,' of eq.(1) has a maximum value of order: G-!\“At-n?’/i.a. Also the maxi-
mum vaiue of u™M, is of this order. As shown later, eqg.(5), the top-value of UM is:
(c%/L%)-0-(B+h + g-b), what is neglectable with respect to: - M, = q in eq.().

In the same way, it can be shown that if q = O, the term: 2:u'™ M," Is small with respect to
the terms (tp-My)" and EL-v"™ and the terms with M, and M,' can be ommitted in eq.(1)
and for the same reason also in eq.(2).

The values v"-Myand v'M_" are also comparable and equal to: ma-q-r\]y-sin(-’g—l_m-z) and
L

)N

in the same way Is: ™M, = u'M," = = g-u in eq.(3).
From fig. 1, it follows that the Increase of the torsional moment per unit length is:

Lo 4
ot AP, )

So 2u™My & 2'u-(”rc")'/l_2}-(p-sp + SR + qu + pee, + q-cp-eq), and for high eccen-

M= P'Sp + qrsg = PV +qutpge
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tricities, for instance: Sp = h/2 and Sq = b/2, the terms: p-h/2 + g-b/2 dominate (because
v << h/2; u < h/2; cp-ep < h/2; qo-eq << b/2) and 2-u”-M,{' becomes:

2" M ™ w2 ) (oh + gb) (5)

For small eccentricities, for instance s Sq = 0, this term Is much smaller and it is seen

that this term is always neglectable.

In eq.{3), ¢"" can be replaced by: " = - (mz/Lz)-cP". and eq.(3) can be written in the

same form as given in [61:
El, (/L% + Gl + Kl@” = UM, = M/ - qu =0 (6)
According to eq.(4) is:

TM T QUS prsy Fgrsy S py F prereg T grgre, = P, aigre, — Py, with:

q-s pe
s, = sp'(1 + p—sq) and e, = eq(? + a—e-g)
p q
2 2Bl FU_+1) nEl
ith: Gl = E. =Gl 1+ B - X XY - gl w.(1. £
With: @I, = %El,, + Gl + K = Gl (1+ LT T TeA )= ai(1+ e )1 Ft).
t
Gi-A el
where: Fy = 7—¢ I -(‘i t = ) is the twist buckling force, eq.(8) can be writlen:
Xy L=Gly
Gl ye" - WM _+ps +qgee, ~pv=0 (7

For high beams the term: p+v is small and can be neglected is eq.(7).
For high beams, > iy and thus p << g, is In eq.(1) also the term: (qJ-My)” neglectable be-
cause:
(tp-?\/ly}“ NAdpe <« M E - g,
However in eq.(2} is, for high beams, (M, )" & 4:q e not always of lower order than: - p

or Ely-u"" and can only be neglected for low beams.So for high beams, eq.(1) to eq.(3) are:

ELv™" +Fv' ~qg=0 1)
Ely-u"" +EU (oM )" - p=0 @9
Gly@" - u™M_+ps +gee =0 (3"
For low beams, where |, and %y are not far apart, eq.(1) to eq.(3) become:
Elv™ + Fv" ~q=0 "
Eiy-u"" +Fu -p=0 @
Gl @" + qu - pv + Pe, I8y + Pey® + Fey P = 0 (3"
N t - El /Bl
Now is: qu - pv = q~u-(1 - &) = q-u-1—-:~r:—/¥F——--, because according to eq.(1") and (2):

ex



bob o 2,2 ~ _
v _ (Elv-m: /T = Pt/ YUy _ Eb'1 F/Fey ) EIV/EIX FAF
qu (EJX-TE4/L4 - B/ %)y Elx T F/Fex T F/Fex
where: F_ = ('n:z/Lz)-Elx and: Fey = (7rt2/L2)'E!y are the Eulerian buckiing loads.
£q.(3") can now be written with qu = - M u = - M u™
Gl (1~ F/F_) 1 - F/F
v ex’ . o ex
ToE R e M+ e - (s, + gre ) = O (8)
1 I':'Iy/EIX X 1 Ely/éi)< v v
or:
Gl ye" =~ Mou" +ps  + qe e =0 (8%
1-F/F

- ex
where: Gl , s, and e  are multiplied by: t—gy—/mﬁ;, to getresp. Gl ., s . e .

Equation (8') has the same form as eq.(3) and can safely also be applied for high beams,
where ly << 1, because then also: F « Foy and eq.(8) approaches eq.(3").

Eguations (8}, (1) and (2') can now be used as well as for high beams (Ix »> 1) as for
low beams (I, —> |, ) because this system turns to eq.(1), (2, (3) for high beams and to
eq.(1"), (2"), (3") for low beams.

If now the initial eccentricities Uy, vy and @ are introduced, then the general applicable dif-
ferential equations for Ix > ly are:

Bl V™ = vg™) + Fv' + M = 0 ()
Bl = g™ Pt o+ (@M + M= 0 @)
Gl (e” ~ @ ") -~ MU' +ps_ + qe,'® = 0 (3™

where eq.(3™) is at the safe side if @, Is important.
Equations (2") and (3") have the same form as those of [81. The differences are the equi~

valent eccentricities and rigidity Glm (in stead of Glt) due to warping effects.

2.2 Solution of the differential equations

Equation (1"} Is directly solvable. For instance with: v = v-sin{m-x/L); Vo T Vo-sin(ﬁx/L) and

q = g-sinlmx/L) is eq.(1"):

V= Fouo * My ith: M_ = q12/n° and F__ = n2-El_/12
Fex_ E WITth: % q T an ex"' " % .
2
P Ty — Noie W = K. (o -y .
Because Mx,? = EI>< {v vo) , is: MX,F_ 2 EIX (v VO) and:
M, + Fv
Mo = TEF7r ©)
! 28X

The solution of eq.(2") and eq.3") can be found by the Galerkin method:



For a given differential equation: L{u} = O, in wich L is a differential operator, a solution is

asslUmed in a series form as: u(z) = ZT

fy all boundary conditions (both geometric and static), then the coefficients a,'s can be ob-

ai'fi(Z)' where fi(z) area known functions wich satis—

tained from the n conditions:

L L_
fﬂ C(w)-f,(z)-dz) = jo (3, arf@) @) d@) = 0 (10)
This gives n algebraic simultanecus equations for determination of a, toa.
The application of this method for eq.(2™) and eq.{3™), is given in the appendix. For the f's,

the first expanded term of the Fourier sine series are taken:

u = ussin(nz/L); 9 = @-sin{rz/L); Uy = Uy sin(mz/L); P, = E)O-sin('n:z/i.);
p = prsinlnz/L); q = g-sin(mz/L); M = M-sin(rz/L).
Multiplication by fj = sin(nz/L) in eq.(10) and integration over the length L of the beam,

gives two solvable equations in u and ¢ (see appendix).

- _ 2 - -
Substltution of: u = usin(rtz/L) in: My = - Ely-(u = U)o My = %'Ely-(u - U,) gives:
- g2 e - M? _ - M s -p-L2 e -q-L2
Fu0(1—9~2~l=- )+u0-F-e m~2’5+<p0-Mx+My~(1+ 7 - )
_ = ™ Glm K b Glm-My 7 Glm ”
¥ 2 2
q-ie M
(1 ‘“gjé;—nl)'ﬁ - ) v
T €y K
n wich: q = 823, M_ = 8., - JE A with: = T
inh wich: g = TG M, = T M, and Mk = Fey GIm v with: Fey = 2 Ely.
2 =2
If Mx and My are only due to lateral loading resp. q and p, then: M = g;;_, and My = 9‘7;-[2‘
and eq.{11) becomes (with omission of the top-bar-sign):
e ‘M M2 M
(- M X P . . X, -
Feuy, (1 G ) + Fey Uyt ey M My (1 + a7 o em))
m Mk m
My F = .Y Y (1)
(- ) 0- ) - ()
ey m k

If the beam is only loaded by boundary moments, for instance: M, =M, at z =0, and for
z =L Mx = ML’ then MX" =0 and g = O has to be taken in eq.(11).

For a combination of an eccentrical lateral loading: ¢ with boundary moments: Mx,m is, for
a proportional loading increase, the ratio: Mx.m/q constant and eq.(11) is generally applica-

ble if e, Is corrected to e'm according to:

q-Lz/ﬁ2 e - q-i_z/;rc?' _ ®m _ Cm

m m M m eV L2 2y o L2 2
X Mx,m+q|‘/“ 1+Mx’mn/(qL) 1+Mx,m7t/(ql’“}

and S, according to:

S
- m

2
Mmoo My,m-nz/(p'L )




Mx,m is the top-value of the first expanded term of the Fourier expansion of the moment
surface due to the boundary moments.

The same applies for the moments about the y-axis: My,m'
The equations (9) and (11) are thus the wanted solutions of the system eq.(1"), (2") and

(3™},
2.3 Simplification and asymptotecal values of twist-bend buckiing.

In eq.(1?) is: Mk = yE_ Gl _, the theoretical twist-bend moment for pure bending.

ey 'm
This means that for; e = s = Uy = @ = F=0,is:
M
My = m'_f!\(./l——? and this becomes very large if M>< approaches M, .
! X
- (‘m—k)

According toc measurements of Larsen [53, ¢ M _ in eq.(11') is neglectabie and then in
9 oMy 4 g

eq.(11), the nominator and denominator can be devided by: 1 - (M_e )/Gl_ and eq.(11)
Y xom' T'm

bacomes:
M2 M_F_ s
U'(F+F . X)+M.(‘§+M)
0 &Y ()2 y )
M = & £ (1)
y.F M2
1-L£ L%
Fey (M'C)2
2 2 em My 2
with: (M‘C) = Mk-(1 - Glm ) This term (M'C) can be written as:
- er?a.zMx M M
e e -
M )? = M2 - M2 (1 - T 4 mGEC)zM?'
c c . e Me c m m c
Gl
m

where M_ follows from the zero value of the denominator of eq.(11). Se M. is the redu-
ced theoretical twist-bend buckling moment by lateral loading and normal force because for
M > M_y1- F/Fey ) My.F becomes very large.

For high values of Mx’ Mx approaches Mc’ s0 M’c —> M c and for high values of F is Mx
small and so (M){/M‘c)2 is very small and the deviation between M'_ and M_ has a littie
influence. So with a smali neglection on the safe side, M’ can be replaced by M_ and is
eq.(11"):

M2 M F_ s
“o'(F"*'F — )+M.(1+w)
ay 2 ¥ )
M) (M
M, £ = s = (1)
.y’ M2

fodbe o X

Fey (M )2



As defined above, Mc follows from the equation:

2
e M
MK M2 =0 (12)
G c ™ My

2
+
MC

The resolution of eq.(12) is:

e 2 F e 2 F
= . . YL ey - £ AU =1 A .
Mo = vFg Gl (/( uy Gt ) GIm) Mo (13)
S0 the influence of the lateral loading can be accounted for by a constant a.

The real theoretical twist-bend buckling moment that makes the denominator of (11) zero

MC,F = MC-1/‘I - F/Fey is:

2 El
F
RPN Tk i PN A U k)
c,F L g}i
toE

+ 1 +

_ lil/(em0 )z_ Foy (1 F/F)(1- F/F,,)

2 Git 1- F/F,L

] 1/(emo )2 Foy {1 F/F)(1-F/F, ) ] "

2 Glt 1= F/Ft

For pure bending, €0 - 0O, this is a well known equation from theory (see for instance [2]).

The index o of € Means that F in the expression for &y, I8 Zero.

C

2.4 Stress criterion

The maximal stresses in the beam due to the moments M>< F and l\/ly = wich contain the
second order effects, have to satisfy the stress criterium for failure. A reascnable approxi~

mation of this criterion, (see [4]) is:

o g g (15)

with: o, = (M x/Wx) + (M y/Wy)’ and o, = F/A and fc and fb are resp. the compressicn
and bending strengths.
This criterion is especially right for wet, high grade wood of smaller dimensions and is safe

for dry iower grade timber (for combinations of bending and compression).

Substitution of eq.{9) and eq.(11") in eq.(15) gives:



_“_

< 1 (159

2
M s _-F
Uy (F + F—2e) + M- (1 —X0ev )

M., + Fev &Y M2 y M2

F_ . X OF + c c
f A NN 2
ex oWy (1= - =%)
Y ey Mc

This equation has the form of the equation of Larsen [5]. However it contains now the in-

fluence of warping, normal force and eccentrical lateral loading.

M, In this equation stards for ??-—EM%' where M is the top-value of the first term of the

Fourier serles expansion of the moment area. My ls equal to My.

[n stead of a Fourier expansion the following approximation is possible. The value: ~§--KA

™ X

Table 1
loading bending Sg__m - exact
moment T value
B Mmax/ e M/ p
M M o M2 M M M
(ﬂ Aj L | 0.93 1 1
o — Moo
A yay 185 175 .67
>
J, P |~— X PL/4 PL/4 PL/4
iy 7aY /\ T45 1.35 133
Q .
| i' /\ 12,8 gL/8 ql%/8
AT T 173 106
PP
A / N\ PL/4 PL/4 PL/4
p L A 1.03 1.04 i
e M GeM—f2
1 T~ 3PL/16 3PL/16 3PL/16
A A 1.54. 1.44 1.33
( &M 2) [T~ ' expanded  M-(0.6+0.4-x)
' KM M - —W“' insufficient = 0.4°M




can be replaced by the mean moment of the middle haif (at the largest buckling deforma-

tion) of the beam (with a minimum of 0.4-M . If the moment changes sign along the

X
beamlength and the beam buckles with double curvature).
+./4
So: %4 ¥ _ngd; (= Mm,L/E) given in the last column of the table,
~-L/4

With this, a simple rule is given for the values of p.

Eq.(15) can be written in the well known form:

F n, F‘VO + M>< n'v F‘-u0 + M‘v )
e B v a e e Y <1 (15%)
U X Ux Y uy
F F M2 M, s -F
with: n = 225 0t = = with B = F+ —2.F_ andi M = M (1 + —2-0-8Y)
X y M2 ey y  y A2
Cc C

3 Simplified design equations

Equation (15') is general appiicable and simply programmable. For practice, possibly still more
simply equations are desired.

Simpiification is possible by expressing the combined loading cases in the instability equation
in expressions for in plane buckling by compression and lateral buckling by bending alone.
then the instability equation turns into the so called interaction eguation. This interaction
equation and also the equations for in plane buckling and lateral buckling can then be sim-

plified. For comparison, the usual cases of the codes will first be regarded.

3.1 In plane buckling

Useally the case of a lateral supported beam is In the regulations. For this case is:

:O;Fe

u0=tp0=O;M y

y > o and Mc ~> o,

Eq.(15") becomes:
Mx + F-\af0
Mo (T-FF_)

E . N
i = 1 (16)
Fu

For M, = 0, is: F = F_ (centrically loaded beam) and the equation is:

F Fc-vo

. ——= = 1 s
F Mu § FC/FeX)




Fc can be resolved of this eguation and is:

F R FF 4F
"ﬁi_ = %{(1 + {—zf-x + %i:;uio) - 1/(1 + T:_?JX + i}‘uio)z - Fuex } (18)

The same equation applies for an unsupported high beam or column, buckling in the weak
direction. Then the index: x has to be replaced by: y.
Eq.(18) is the same as eq.(5.1.10 g) of the Eurocode.
Introducing: kE = FEX/FU, and: vg/r = 0L/ = X, or Fex-vo/M ux - kE -n-k-fc/fb and

Keol = F./F, then eq.(18) is:

f
koot = 05-{(1+ (1 + ﬂ'l'?g‘)'kg) - 1/(? + {1+ n-l-%")'kg)z - 4oke) (18')

Thie was an earlier proposal for the Eurocode.

From eq.(17), it can be seen that for a short test-specimen, when Fex—> co, the strength is;

Fooh+ vO-F"u/Mux) =F, T Flt N hg T /i = F U+ cm (17"
If there is accounted for the slenderness and initial eccentricity of the test-specimen for
compression, by: f_ = ch-H + 207}, then, with: Keol = 0 /g and k= k(1 +20:m) =

= Fox/Fegr ©a-(18") becomes, according to the new Eurocode:

f
=05 el ) gl
kcoi‘0'5{“(“”7‘fm (1 + 20m)) 558 +

f k 2 4k
C ey eu "
i [/(1 v (1 e (1 20W) 75 355) ~TT R0 1+ 20w (8

Because A ~ 20 for the test-specimen in compression the term 207 in the expressions
above can better be replaced by (20 n-f_/f 3/ - 17k
In the Dutch code T7.G.B. 1972 is Vo & (0,14 2/200)r and eq.(17') is with X = O:

F f

v
=1 L 0oy _ggrS B 2101075 = 1- 0,075 = 0,925
Fo M., W

where fc/fb = 0,75. So: Fu = Fco/0'925 is used and kE = nZ-E/(fC-)\-S,ES). This gives com~
parable results as in the Eurocode. The condition of limited deformation is not used in the

Eurocode because the strength condition is the only measure for safety.

For buckling and lateral buckling further simplifications are possible by re-arranging the

terms of the equations for short beams as well as for slender beams in the form:

a=1—TE)~*E~ with b << 1 and ¢ << 1

making the conservative approxiation possible:



- (- - i

1+ {4 2

1-c¢

1-c 1-¢
This too conservative value of "a" can partly be corrected by:

i - 1 1

- = 2
1+ b 1+c¢ 1+b+bc 1+b+bcma

1"C +c 1—-C2

X

If this is done for eq.(17) than eq.(18") may be replaced by:

1 \
Kk = if ke 2 1 and:
col E
1+ (fc/fm)nlﬁ + 1/kE)
k_ = 1 if ke <1

col E
1/kE+ (fc/fm)n)\ﬁ + kE)

making a simple design possible. The equations are slightly unsafe in the neighbourhood of

Kg = 1 and can be corrected in the same way as done in 3.2 for lateral buckling.

Elimination of: vy from eq.(16) and eq.(17) gives the Interaction equation:
EX =(1-5)(1- FE""FT—E' ) (19)
ux c ex U

what is identicaly to eq.(5.1.10 d) of the Eurocode.
With the unsafe neglection of: F-Fc/(FeX-Fu) with respect to 1 in eq.{19), this equation is:

M
e LE_ =1 (20)
uXx C

being art. 4.5.4 of the Dutch timber code T.G.B. 1972,

Although the neglection is unsafe, the failure condition is in the same way too safe, and

eq.(20) will give a good approximation (especially for dry, low grade, large sized timber).

3.2 Flexurai~torsional buckling

For bending in the main direction without compression (My = 0; F = 0), eq.{15') gives the
expression for lateral buckling, M,

at’
M2
lat
M uo'(Fey' VE )
al L = (21)
f, "W M
b ''x o lat
fb-Wy-(1 %Mz)
co

where the index 0 in Mco means that F = O in the expression for MC.

For short beams, Mlat —> Mux = fb-WX and Mlat <« Mco' 50 eq.(21) is approximately:



] 2 2 . 2
MIa‘c - Yo Fev_ Mlat/Mco N1 - Ug'F y, Miat_(t + M2 M2 )
ux Muy 1o Mlit/Mcgzo Muy Mio lat” Teo

Because the second term of the last expression s small and Mt = Mux’ this can safely

be approximated to:

M
Mg KX (22)
at 2 2
usF M M
1+ 2. &Y, ux_(}_)_ ux)
M, M2 M2
Y Meo co
or neglecting the smallest term and using a correction factor B, eq.(22) becomes:
M
M, . & Ux (22"
lat U E M2
1+ __Q._QY._L%X.B
Mu M2
Vo Meo
For slender beams, Mige ™ Mg <« M So eq.21) is approximately:
M .2
lat - 1 A 1 (23)
(Mco) Yo ey 1 o Fey Meo
N TE ML M e g (e g )
uy lat” ux uy ux
or:
M
fat 1
y (24)
M u. -k M
co 0 ey, co
14 e (1+ )
uy ux

Eq.(24) is safe for slender beams but needs a correction factor B when applied outside the

slender region and can be given like:

M
lat 1 .
N ; (24"
Meo 1+ o Fev'(1 R MCO)B
2, ' W

Eq.(22) and eq.(24) are close together in the neighbourhood where Mg = My and there
eq.{227) is equal to eq.(24). The factor B can be determed from eq.(21) for that case.
Calling: Miat"Meg = MMy = X and uOFéy/Mu = ¢, then eq.(21) is, using eq.(24"):

¥

1 c o2 . 17+ Bc .

1+EC+(1+BC)2—?&‘1 or: 2f% = q5g s & 1+ B2 giving:
. . |

B~ 2= Y8 N 7ar  and in the whole range is:

_flfey fFey L [toley Moo -
Be =1 2m = Y e W

uy ey uy  ux

The equations above may also be related to the bending strength of the standard specimen.

/Mco = (0,75)2 = 0,5625 and eq.{22") becomes:

According to the Eurocode is then: M, lat



- {6 -

ux - M

u-F_ M fu F

g Mey, Mu,!at - 20 Mey_ 0,75)2
uy “eo Uy

with the specific values of F oy and Mco {F'ey and M'CG) for the specimen.

uOFey/2M uy = 0.5-k! nlyfc/f nE/(Bfm) (being for instance 307) for the test-spe-
cimen with a distance of the bracing of L = 40%_y (Xy = 40},
With the notaticns:

Ko = Mg/ (M, 241 + 0.56-y/nE/ (87 )

kEns - Mlat/M

(22"

u,lat

eq.{22") and (24") are corrected to the real bending strength Mu at’

1+ 0.56 nE/(Bf )

kK, = < for k=1 {26)
ins 1 m
1+ -9y0.5 k. _na f /f
km‘/ ey 'y 'm
1+ 0‘561/11E/(8f )
for km < 1 (27)

+ L
- (1+ Kk _1/0.5 kay ™y fe fry

rl—n

U, or 7 in this last equation is unsafely taken to be zero for the Eurocode eq.(5.16 e).

Thus for: Miat < Mu,lat/(1'4) is stated: kmst M! /Mul at Mco/Mu,Iat = k'm.
M., =M

co 1o % @ccording to eq.(13) and: Mo = W/Fey Gl - For high beams is: EIy < El,
and neglecting the warping rigidity, as Is possible for iong beams with a rectangular cross
section, GImo = Glt‘ So

_Jrfhpd e bbb o e
Mco_ %LZ 2 BG O - E Gmean/Emean %

Because G is related to E, the mean values of the division can be taken, From this the ex-

pression of the Eurccade follows:

= M/ W, ﬁ Eag G JE (28)
If the real first order bending-stress is compared with Gy then O, Nas to be replaced
by p0_,, according to table 1. Then with log = L/(p-ozo), 2q.(28) is identicaly to eq. (5,16 e}
of the Eurocode. The factor: a, gives the influence of the eccentricities of the lateral load-
ing (see eq.(13)) and g, the influence of the moment distribution. It can be seen from eq.{13)
that the values of lg of the code are for slender beams and are not on the safe side for
short beams. A more simple approach is to regard the mean moment over the middle half
of the beam as mentioned before and to use directly the expressions for the eccentricity.
It can be concluded that the Eurccode description of k_, and kins are not general enough

and a better description is necessary.



3.3 Interaction equation for flexural-torsional buckling with compression.

If the rigidities Elx and Ely are mutually comparable, or when a beam is only loaded in the
weak direction, the stability calculation of in plane buckling (without lateral buckiing) is suf-
ficient. For the general case of lateral buckling eq.{15") applies.
For only compression (F = FaM, = My = 0), Is eq.(15"):

-E—E— - VOF ML (29)

Mux'(1 - -F—jx) Muy'(1 - —"9")

For only bending (F = 0; M, = Mg My = 0), is eq.{15"} equal to eq.(21).
Elimination of u_ and vy from: eq.{15), eq.(21) and eq.(29) gives, with safe neglection of:

0
FF 2 M2 M M3 F-M FrM?
(F FE TOF F.;: ; ( 2 lat _ 5 £ ) and (F 'MX - )(2), the equation:
ex U ex  u MM MM ey "ux  F_ -
FeM FooM M2 M2
- F .MX -+ "IE"" + MX e ( ;f - M 'XM ). F 1 F . 1 {30)
ey ux C Ux Mlat lat "ux (1 - T_.~t>-(1 - T:;_y)

For very slender beams, is: M < Mla‘c << Mux and is eq.{30) approximately:

Mg~ ME (1= I‘:F“c)( - %)(1 - ?ey) (31

Because for such beams useally: F < Fo —> Fey << Fyis eq.(31:

7 1
2w (1-E)(1-E Va1 -E (32)
Miat ( F:c) ( Fey) Fe
For short beams is: Fey” FC and Mlat_> Mux and in eq.(30), the dominating terms are:
M
E v (33)
C Ux

Equations (32) and (33) are aproximately linear and a liear interaction equation is better
than a parabolic one as often is chosen ih reguiations, for instance in the form of eq.(31),
without the terms with F, and Fey’ Also the choise of such a parabolic eguation in combina-
tion with eq.(33}, as is proposed in [5], can be unsafe. Better, but conservative, is to use
€q.{32), that approaches eq.(33) for short beams because M lat M

In fig. 2 some possible interaction curves are given for rectanguiar beams O‘y = 25 to 150)
It can be seen that this curve can be approximated by two straight lines: y = 1 - cx and:
' T_%E), or the point of inter-
section of the line: y = x, with the interacton curve, eq.(30). This point of intersection is
dependent on the parameters: Kipy = M!at/Mux and: KC = FC/Fey = kcol/keu and if the ex-
pression for intersection is approached by the first terms of a row expansion In these pa-

y = (1~ x)/c. The intersecton of the lines is in the paint (-%;E



T Ffaa,o-
. 08+
. o ]
PR R NN N\ N N 2
. %"
Tl N0 e 3
S
04t -5
02+

O g2 04 06 08 10

L

Fig. 2. interaction curves for beams with rectanguiar cross section.
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fig. 3. Approximation of the interaction curve by 2 straight lines.

rameters, then:
1.25 - O.2S-Km + 2-Km -KC 2+ KC

or: ¢ = " : : -
2+Kc 1.25"0.25Km+2Km Kc

X =y = e 1
s = Y¥s T Fe

and the interaction equations are for this value of c:

i My Vx el (34)
= koot g ] if: <=
Fc Mlat MIat Fc:

F M M, F (35)
o=+ = s fip— ==
F M Mt~ Fe ,
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The value of F, in q.(30) has not much influence, so the lower bound is taken for torsio-

nally weak beams wherefor Ft 3 Fey' Eq.(34) is, unsafe, in the code T.G.B. 1972, with:
Klat/c = 2. So: F/FC+ Mx/2-MuxS 1 {art. 4.5.4).

With: ¢ = 1, and: Mlatw Fc-z/2, where z is the lever arm of the moment (MX: z-NX), is:

E Nx-z FC Fc F
I+ m-g =5 = Nx + 5, giving the calculation based on the buckling of the com-

pressed flange. This condition Is fulifilled for torsional weak I~ beams in pure bending. For
rectangular beams this calculation is safe. However for short torsional weak I-beams and

trusses lateral loaded on the compressed flange, this method is unsafe.

4 Loading of the stability bracing

4.1 General eguations

The loading of the lateral support by the bracing can be dtermined by eq.(2") and (3"), where
the p changes sign and is equal to the ioading of the bracing. At the place of the supporting

bracing at height s, the deformation of the beam must be equal to the deformation of the
bracing u, . So:

u =yt s (p - cpo) = Uy (36}
Also the total load of the m supported beams: m-p, has to be equai to the loading of the
bracing. So:

P
ano_ o™ oy = P AW Pl
A A T El, o (7]

where W is the loading by the wind and Elh is the stiffress of the bracing.
Equations (2"} and (3"} become (with Sq = 0):

Eiy(u'“' - uo"") + M)+ Fu +p =0 (38)

Gl (@" — @) - M u" + qee-ps=0 (39)

From eq.(37), eq.(38 and (39), the unknown loading p can be eliminated and two equations
in U and @ remain. From the solution of these equations, p can be calcuiated. The solution
of these two equations is analogous as for double bending as given in the apendix (see [61).
The lateral stiffness of the m supported beams is of lower order than the stiffness of the
breacing, or: m-EIy << El and if, as before, the influence of ®, Is neglected, then the loa~
ding of the bracing is:



M-(@:s - &) + Gl - s*F

)

*[al, - ML= —FM—Z:I +wi(

1252 eh " eh s*F
= eh (40)
Py Gl ~ eM 2
(- e =) - (1- %)
Fen F s Fen's
eh
m*El,
with: F = .
eh e 2
4.2 Bracing and loading on the upper boundary of the lateral supported beams
For this case is: F = 0 and e = s = h/2 and eq.(40) becomes:
m®u me M2+ We(Mes + Gl )
p, = 0 5 LY (41)
Gl t M's - M ’Feoh
For the loading of the bracing is:
n* (42)
D = e EF 42
vV |4 "h”h

and elimination of El, from eq.(41) and eq.(42} gives:

nz-M2~(uh+ uo)'m
Py = + W (43}
L. -(GIVO+ M-s)

If the influence of ®, was not heglected eq.(43) would have been:

2,2
oMU, + u dm 2

= — O KM W (44)
L '(leo+ M-s) L.

Py

Equation (43) can be written:

u. +u
L, 200y
p, = M. sma— W (45)
V0
[l v

It is safe to take M = M,y In the denominator, giving a general equation for p,. For rec-
tanguiar beams is the term:

For common beamns is: uy/L <« ~ 17400 and a bracing is useally stiffer than: u /L < 17600
and P, is for a beam with h = 10:b (without wind):

p, ™ M | and the total force is: P,=£p L = 003.-0M



This is equivalent to the value of the T.G.B.: 0,0S-m-Fmax of braced bars.
For a rigid bracing is u, = 0 and is Pv & 0,02 mM/h, as also is given in the T.G.B.

4.3 Bracing at the center or in the tension zone of lateral supported beams

The same approach as for unbraced beams can be followed for braced beams [81 and the
loading of each beam is by:

p = pv/m - W/m
leading to a simular equation as eq.(11) for the second order moment. The beam has to
satisfy the failure conditions leading to a simular equation as eq.(15").
The same simplifications for braced beams can be given as Is done in chap. 3 for unbraced
beams (see [81) leading to comparable equations. If the bracing is in the upper part of the
compression zone of the beam (2s - e 2 1/Givo/Feh) the equations of 3.1 apply and the
interaction equation is the same as eq.(18},
In general the system may become unstable if the bracing is at the tension zone and the
leading is on the compression side or in the centre (for instance for pure bending is e = 0)
so when 2s - e is negative or: 25 - e < - vao/Feh (» 0). This instability can only be
avoided by sufficient torsional stiffness of the beams thus:
Stability Is provided if: s = e/2 (bracing at the compression side of the beam) or when:
Glyp = (WOTENM, | oo - 208) = 175 M, 1ot

{ension side, loading at the compression side) and Mux is positive and s and e are positive

(e - 2's) where s ¢ e/2, {bracing at the

when pointing from the centre 1o the direction of the compression side.

Because of this last requirement h/b < ~ 4 is necessary to have no reduced bending
strength for rectangular beams with bracing at the lower tension edge of the beam.

If this requirement is not fulifilled the following design rules apply:

M
- WX N
Mlat = — N if Mux < MCO (46)
0 Ux UX
te /g (1 )
Ly~ vo co
M
_ c0 :
MIa‘c - O M2 M2 if Mux = MCO (47)
1y (1 —50) -9
Uy vo M M

Gl
T - Yo . -
with: Mco = e Tog i © 2z = Tfeivo/[:eh
With the notations given before:
ke = Mg/ (M g1 + 0.56+/nE/8F )
kins - Mlevt/M

u,lat’



eq.(48) and (47) become:

1+ 0.56 nE/(Bfm)

o= for k21 (46"
" e =t oy st - 22) m
k rm Y
1+ 0.569/nE/(8F )
=3 for km < 1 (479
1t V(1 k) }/nkr/e—Ez)
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Appendix 1
Galerkin resolution of the differential equations.

The differential equatons (2") and (3"): T_z(u,cp} = 0 and L (ue) = O are solved for the
first expanded of the Fourier sinus serles:

1}

u

p

usin(mez/L); Uy = Go-s‘tn('fr-z/L); @ = g-sin(m-z/L); Py = @G-sin(n-z/L};

p-sin{m-z/L); My = My~sin(n‘-z/L), where p = dz(My)/dyz.

For the loading in the main direction Mx' g, two known ezpanded terms are regarded in or-
der to see the accuracy of the description by the first expanded term for special loadings,

The second expanded term with sin(2:m-z/L), has no influence in this case.
M, = M sin(m-2/1) + My sin(@-mez/L); g = q,sin(m-z/L) + qysin(3-mz/L).
L L

in the Galerkin equations: j [2(u,qv)-f§(z}-dz = 0 and: f zs(u,fp)-'F.l(z)-dz =0, is:
0 0

f.(z) = £,(z} = sin(m-z/1)
and these eguations become:

2

- - .
f[E L (u - u )-sin®(m-z/L) - F-u-ﬂz- sin®(c-z/L) - Q- -TE- inz(n-z/L}-{M1'sin(ﬂ|_-£)
L L2

+ My sin(3--’5i~_:~z)} + 2. tp cos(mrz/L) sin(x-z/L)- {M cos(n £) + 3 M, <:os(3 e Z)}
L2

N

- 2

e n?(7- cz/L) {M +sin( 7"hz) + Q- M sin(3-& Z)} IC-Z- s%nz('rc-z/L)]'dz =0
i_ YL

fL

2 2

(e - CPO) L?' < sin®(ez/L) + o Ez sin®(r-z/L)- {M sm( £) 4 M sin(3-12 )}
L.

em@- sinz(n-z/L)-{qQ'siﬁ(j%z) +ay sin(B-E['—Z)} + F_J-sm~ sinz(n'z/i_)]-dz =0

In these equations are:

L L. T
%f sin“{m-z/L)-dz = f sin®(r-z/L)-d(r-2z/L) = fsin?‘(cx)-dct = E2
0 0 0
T i T
fsén3(cx)'dcx = %; fsinz(a)-sih(i’»a)-da = - -1-%-; fsin(oa)-cosz{oc)-da = %
0 0 0
T
fsin(cx}-cos(a)-cos(B-tx)-da = ~25~ So the equations become:
0
4 2 2 2 2
RN ey R N A . A A R SR A I SO eI -
E'yL4 U= uy3 FuL22 @L2M13 @L2M315+2L2@M13*



2 2 2 2
= 2 _mm 4 =~ e 4 LT
—Z'W—-cp-3M-“-cp EME+OM e - L
L2 35 (2713 37 215 y (22
and:
-G (o - ).Ez.ﬂ+a ?E.Z.M i_aM.Ez.ﬁ;w.Pe._. A e g A
m T P e ERENE R R I T A 5
A L
tpis 5 8]
or: .
TG0 - Fu- a2 Dt M. - M =
= 1_2(u‘ uy) = Fru PrameM e My My—O
and:
Sl et M. BMenr e Bk B Ly pg B,
m® " % 3 B Mgt T e erg, 2 3 emm%n 15w
12
+p.-|-7--.sm:0
Tt —
93 8 M3 - 2 2
With: q = == - ==h M= Mot - mh R =Bl e =e F= and:
97 3% q1( 5_51) x - 3 1( 5 1) ey "2y m 2y
-2, 2
s . = s E——L;‘—ifﬂ- are these equations:
m moo
¥
Fey.(u - uO) - Fu- tp'MX - My =0
Glm-(cp - cpo) - Mx-u el oM, - s'm-My =0
From these equations are u and @ solvable. So is:
L= MV-(GIm~ e M+ s'm-Mx) * MGl e, * Fev'uo-{Glm— e'm'Mx)
— By - YT
(Fey F) (Gl e M- MY
The total moment My E ( with My and Mx as first order part} follows from:
2
- Ay - s S L el B (R G = 0 ) -
My,F_ E}y(u Uy} >My,F L2Ely(u u,) Fey(u Ug) =
- ' —_— ! * - - - 2. . . —_ > .
N :Mv(Glm+(sm em) Mx)+G|mecpo4 qu0+FuG(Glm eme,F
yF ey o Y ey
(Fey F) (lem eme) M



Appendix 2: Approximations of M.

In general the Euler moment of lateral buckling is:

2 ~
Mo, = Glno 1/ ©mo” “ﬁ /Glmo) L }/(emo/?‘) '(Pe_v/GImo) ) B
Fgyh ¢ 2 4Gl (1 - EI/(EL)) e
EI\-’ h? h?F h
_2(1 e ) ey
X
or:
a_ ~h/2r ,) 2 4GI 1C I,
o __E_.mw_.( & +( Lt W).(im_l)_,e_) (1)
co  1-1/1 B2 LZF W2 I h
ey ¥ ’

Only high beams need to be controlled for lateral buckling.

For high beams {e.g. Iy < IY/LL) eq.(1) can be simptified to:

2 4GI 4C _
e ) (2 g (

h%F h*1
ey Y

[

For I-profiles and for trusses It has to be neglected and also for shert beams the

warping rigidity dominates and eq.(2) becomes:

2 L4cC
o et (8 () - )

h l)_

or for I-beams and trusses:

2
9 OEu'( (%) 1o~ %) (4)

For pure bending (e = 0) this becomes:

5o ™ i (5)

and for a joading at the upper edge (e = h/2) is:

S = 0,()2'OEU. (6)

This predicted low value of lateral buckling is verified by a computer calculation of

a short truss with a small lateral foading to simulate an initial displacement.

For long beams the torsional rigidity may dominate and eq.(2) becomes:

. 4al
%o T gy 21—}\ (1/(%) N (tht ) h %) 7
) ey

or for pure hending {e = 0):



h 4Glt rEl /m
O ™ Oy B 5 = LW GI /{EL) (8)
X h Foy

o

or for beams with a rectangular cross section (E = 16G):

= le ]f GE = (9)
In general eq.(1}) is for beams with a rectangular cross section (E/G = {6):
S OV S GRS WO S RS (10
co 2,42 ) 22 : 2 h
1 - b“/h h b h

Determining is a loading at the upper edge (compression side wherefore e = h/2),

For high beams (e.g. b < h/2), loaded at the upper edge (e = h/2) eq.(10) becomes:

e Am s 222
OCO-30EU(;/O,SS+L/{E h?) - 0,5) (11)

For short high beams (with dominating warping rigidity: Gl << TtZECW/L2 or: L < h
for beams with a rectangular cross section) in pure bending, e = 0, (e.g. the part

between two lateral supports) eq.(10} becomes:

= 3. . = 2
Org = 370, V0.3 = 1.04 St (12)
For compact beams torsional instability may be determining. When I:I EI lateral

buckling will not occur but uncoupled buckhng and/or torsional bud\lmg is possﬁ)le

In the limit case Mc becomes for Ely > El (loading at the compression side or
e > 0):

2 g . -
Mco Y Fey'(’lmo'h/(emo/z) -(I*e),/G[mG) + 1 - 1/(emo/2) -(Fey/(ﬂmo) ) =

i

; 2 o
YE_GL e /2) Fey/(}lnm-(/l £ 4GL /(F e ) - 1)~

ey ~ mo Tmo me’ ey mo

£ .‘ " 2 - - -

” ey Glmo mo/ 2)y F /GEmo ( * ZGImO/(Fe_\*emo) 1) - GImG/emo

= Gl /e = (GL + =°C /1 /e (13)
VO t w

When the torsional rigidity dominates is: Mco 73 GIt/e {torsional buckling}.

3

When the warping rigidity dominates is: M 3 TE?'CW/(GLZ) (buckling of the upper

co
flange). For I-beams and trusses loaded at the upper edge (e = h/2) this is:

.2 EL h%/4 h M, F.,
Meo = 2 e Feyg = Ny = =3 = Fey £l

or the compresssion force in the upper flange by the Euler moment is equal to the



Euler buckling foad of the upper flange. This is comparable with eq.(5) and smaller
than the equivalent eq.(0).

For a beam with a square cross section the warping deformation is neglectable and
also torsional buckling is not determining. The beam can only buckie in the loading
direction.

For a cross beam { —|— with: I\., = Ix) with dominating warping rigidity and no rigid

joints between the flanges is (counting only one flange):

M _2 3,2 2y 1.3
Oy (;O . _11“2.0,3-5.[;_9%.1_}.&2:_@.;&@.%19 :0"()'GEU
bh®/6  el” S Y R B !
when e = h/2 (loading at the upper edge).
The same value is found for pure compression o = Fmr/A:
.= FC | n?ERi 2 03P 22 ERD*/12 04 - 00
S N N R AL L2 bh Eu
Thus for flange-less profiles at the compression side (I, i—|, I__| profiles) instabi-

lity is due to buckling of the compressed flange-less web.



Appendix 3 Proposal for design rules for the Eurccode

5.1.6 Bending

The following conditions shall be satisfied:

s ]

o L. - f
m,d 7 “inst m.d

(5.1.6 a

% d follows from the mean moment of the middle half of the beam with
1

length L (see figure 5.1.0) between the supports preventing retation and

lateral displacement.

+1./4
- ——————2 . ' 2
Oma T T ) Mdx (5.1.6 b)
Y ~L/4
loading bending exact  M/p =
moment value Mmean

M/ o approx.

[P X

it o
A A LT
(AM A) [\

KMIM — KM

M M
i i
PL/4 PL/4
135 1.33
ql’/s ql’/8
113 1.09
PL/4 PL/4
104 i

3PL/1G 3PL/1G
144 1.33

MA0.0+0.4%)
= 0.4-M

Figure 5.1.6. Examples of the mean moment over the middle haif of the beam.
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and x =

ol
3]

When the beam is loaded at the supports (x = - ) by bounda-

ry moments M and xM {where -1 s % = 1) is:

_M06 040, 04 M

m,d W'\, Wy

G {5.1.0 ¢}

The minimal value of S of 0.4-M applies alsc for combined lateral
loading with boundary moments.

Cantilevers can safely be regarded as two times longer symmetrical loaded
beams (having zero reactions at the ends).

k.
inst
failure by lateral instability (lateral buckling and torsional buckling).

kinst
stress, taking into account the effect of initial curvature, eccentricities

is a factor (s 1) taking into account the reduced strength due to
shall be so determined that the design value of the total bending

and the deformations developed, does not exceed fm d

The strength reduction may be disregarded, i.e. k = 1, if displace-

inst
ment and torsion are prevented at the supports and if

1?m,k/cm,crit s 0.56 (5.1.6 d)

where S crit is the critical bending stress calculated according to the
classical theory of stability,

l“inst may aiso be put equal to 1 for a beam where lateral displacement
of the compression side is prevented throughout its length and where ro-

tation is prevented at the supports.

Under the assumption of an initial lateral deviaton from straightness

of less than 1/300 kh may be determined from {(5.1.6 e-f).

st
k {1 +056y0E , /(8F )
K o= i 0.k mi) ) for k= 1 (5.1.6 e
kar "/O’S'REZ'n'Kz'fc,k/Fm,k
k_{1+056y/nE  /8F_ )
Kot ‘“( > 9.5 m.k ) for k=<1 (516 1)
b+ O'S'(km+ km)']/o’sykl“ﬁz'H'XZIFCJ(/Fm,k

In (5.1.6 e-f) is the loadirg in z-direction, being also the direction of the

the weak axis and is:
i

. Z
= 300'1:2 15.1.6 g)

where r_ is the core radius of the compression side, giving for solid tim~
ber:

N E e = 0,006, {5.1.6 h)
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]ef
)\Z = (5.1.6 )

™~

where lef is the buckling length and iz = 1/1Z/A,

e nE
k., =t 9.k (5.1.6 })
=Z : 2 p
[ W-f
coirep z ¢k
S crit
ko= “?‘;‘ = (5.1.6 k)
Py (1 0567, RE /B )
with
- - E‘Ez h'fc.k . ( (_@)2+(1_1_;g.)_(4 leF Gmeanltor . : Cw)_ _G‘_)
n.crit 2 I Ix I e 1 h? R3] h
Yoq- Té— YT Ry mean 2 ! L
4 (5,46 1)
where
C, = a warping factor: C, = 17112/4 for I-profiles and
CW = 0,3.11112/4- = h5b3/160  for solid timber,

e = eccentricity of the lateral loading, being the distance of the load with
respect to the neutral axis if the beam is only lateraly loaded. The

sign of e is positive in the direction of the compression side or,

e = h/2 for a symmetrical beam, only lateraly loaded at the upper com-
pression side,

e = - h/2 for only lateral loading at the tensional boundary and

e = O for lateral loading at the neutral axis of the beam or for loading

by moments at the supports (no lateral loading).
For combined lateral Joading with moments at the supports e has to be
replaced by e according to:

e = -~e~o—— (5.1.6 m)

{+_m

G

q
where Oq is the design value of the bending stress by the mean moment
of the middle half of the beam by only lateral loading {eq.(5.1.6 b) and 5

is the design value of the bending moments at the supports (eq.(5.1.6. ¢).

WhenI_ =1, 5 ., turns to the torsional value of:
z ¥ Um,erit

/Gm@an'lto~ ﬁz’cw :
N Bt ‘E (5.1.6 n)
micl - e W 2 oew / 0k
o, mean ¥ ef ¥ v
Simplifications of o .. at the safe side are possible.

m,crit

For solid beams {with G = 1/16} (5.1.6 |) becomes:

/E
mean” “o,mean
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3'1( B 2 ]2
- LEZ eyt Jbhy el _e :
“m.erit T b2 <,k /(11) + (1 {2) ( 22 + 0,3) h} (5.1.6 0)
1-2 » § t“h i
h?

For high solid beams (for instance if b < h/2) loaded by only bending

(e = Q) this is safely:

2 2 2
bt e S w b
el Fo.k /16 v 09 g (5.1.6 p)

For relatively long, high. solid beams loaded by bending alone (e = 0) this

may safely be replaced by:

2
- bl g f

“moerit T hol e Fok T (5.1.6 ¢)
ef

For relatively short, high. solid beams loaded by bending alone (e = 0}

the warping rigidity dominates and may safely applied:

= 164k f

“m.crit Ez ok (51.6 1)

For relatively high, long, solid beams lateraly loaded at the upper com-

pression side {e = 1h/2) is safely:

= 3k - . Z I
S it = 3 Keg fe (]/o_.ss v 15p /(b 0,5) (5.1.6 s)

For trusses and thin-webbed profiles with a dominating warping rigidity

the torsional rigidity Itor in (6.1.0 ) should be neglected and is:

k__h f I 4-C
Smer S o : (1/(h)+(1 £ = (5.1.6 t)
Yoyl Z ¥y h™1
i Z

¥

For high profiles with with flanges in the compression zone, whereby
these flanges mainly determine the rigidity IZ (for instance 1 - and T -

profiles and trusses) this is:

1/92 + 1 - 3) (5.1.6 u)

- =k }
“m.crit l\Ez lcc.k(r 2 h

For thin high profiles with a low warping rigidity (when 17 of the com-

pressed zone, being the web, is much smaller dan IZ of the total beam,
for instance for +. - - or L - profiles, torsional instability may become
determining and the calculation can be based on the torsional or warping
rigidity of this web and is for the lateral loading at the compression

side and dominating warping rigidity:

= 09k,

gz

{5.1.6 v)

o .
m.,crit c.k
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where k'EZ is the value of kEz when only the compressed web of the pro-
file is counted for the rigidity.

For dominating torsional rigidity of the web the equation for long solid
beams can be applied.

With respect to torsional buckling by compression alone is also:

< 09Kk -f )
Pes0id 0.9 Kz §c;o;d {5.1.6 w)
and kEZ has to be replaced by O,‘)-k‘EZ in the expressions for columns of
5.1.40.

Columns

The bending stresses due to initial curvature and induced deflection shall
be taken into account, in addition to those due to any lateral load.

The theory of linear elasticity may be used to calculate the resultant
bending moment.

For the initial curvature a sinusiodal form may be assumed correspon-

ding to a maximum eccentricity of the axial force of:
Uy = 11 (5.4.10 a)

where r is the core radius.

For solid timber 1 shall as a minimum be taken as:
= 0.006 (5.1.10 b)

{corresponding for a rectangular cross-section to an initial eccentricity

of about 17300 of the length). and for glued laminated timber:
1 = 0.004 (5.1.10 c)

The stresses should satisfy the following conditions:

o g 5 G
l'C!-Of’d N kmd-F X < 1 For I'C’-OI-“d . 1_m.d.F (5.1.10 d)
“c 'e.o,d inst ‘m,d M€ “¢ 'c.e,d “inst m,d
[e] o) o] o]
Ewg{?f'd—--k e * T'w“d—F—-— £ ] for ],C"Of'd < ],m.d.f {5.1.10 ¢}
cleod ! ‘“inst m.d ¢ 'c,0,d “inst ' m.d
where:
2+ k Sk
S < ez _ :
l\'mc 1,25 - 0.25k, + 2.k Lk sk b (5.1.10 f)
f1ist st ¢ Ez

(5.1.10 g)



E=1+ (; s nh, (1 + 200 )-FCfOfk)- Spz (5.1.10 h)

- Ty LU T TR 200,
m,k

1f A, < )L){ the equations of 5.2.6 apply for instability in the z-direction

(direction of the loading) only.

5.2.0 Bracing
Adequate bracing shall be provided to avoid lateral instability of indivi-
dual members and the collapse of the whole structure due to external
loading such as wind.

The stresses due to initial curvature and induced defiection shall be
taken into account.

The theory of linear elasticity may be used.

The initial deviations from straightness at midspan shall as a minimum
be taken as {/450 for glued laminated beams and as /300 for other struc-
tures. b

A:I:-_.Eo——tﬁo—---—cgo-————-w———- -

|
1

|
1

7 l g

external food on bracing

JF S .

‘?N N N

figure 5.2.6 a. Bracing system

With n equal members (e.g. beams or chords in a truss) of rectangular
cross-section, the bracing should in addition to external loads (e.g. wind)

be designed for a uniform load q per unit length:



n . Nc.d
brd Ik ok
" “br.c “hr.m
where
9.5 E G
Ky, 75 ( 0+ 15 m (1 -00632) (&) ok mean
r,m 2

h™ " h “E :
m.kK To.mean

for beams with rectangular cross sections, and:

Ky = for compression gords of trusses.

!

k =
br,c L )
3¢ i‘n l\] U, ubr)

NC q s the design value or the axial force in the member.

)

Where the member is a beam with a rectangular cross section with a maxi-

d cd © §.S~Md/h.

Where the member is a truss NC d is the maximum compressive force.

mum moment M ; and depth h, NC a should be taken as N

Kk, = 1/—1‘— =1, (where /is the span in m).

u, s the initial deviation from sthaightness at midspan
U, is the deflection of the bracing caused by the sum of q and the ex-
ternal loads calculated with

E:EO -f /f

K Tmd” md

By the calculation of U, the effect of slip in the joints should be
taken into account,

Stabitity of the braced beams

When the bracing is connected to the members at the compression side
or at the neutral axis of the lateral supported members the stresses of

these members should satisfy the following condition:

s

c.0.d “m.d .
k_-F Tk -f =1
c c,0,d mom c¢,0,d
where

4 l(E\,

2
_1+20-'r;) <1

,
ke = 0,501+ 200)-[€ - y/e

i

f k
_ oy . _cok | Ey
E—1+(1+q}\)_, {(t + 20-70) fmk) =907




k G

K -y _ ¢ Ccod
mon ' i
? i\Ey fc,o,cl

When the bracing is connected to the tension side of the lateral suppor-
ted members k. ¢ Is:

ins
. f+ 0.567F,  /(8F ) NP
mst f {1+ [?”1”*)1/70\- r /e - 2z) m
ke *m Ly
Y ™ m
I+ 0.56/0E /(8 )
| 0.lc m,k for k<1

Yinst 1 - ) . 5 m
‘%Z VR (0 + Kk )y 1, te - 22)

with km according to 5.1.0,
e the excentricity of the lateral loading according to 5.1.0,
z  the height of the connection of the bracing with the same sign con-

vention as for e.



